Dear Editors of Nuclear Physics B:

We are very surprised by your finding that our paper falls outside the scope of Nuclear Physics B. We suspect that there is a misunderstanding. Our paper is about the physical properties of a quantum qubit model on lattice (which is also called quantum spin model in condensed matter physics). It is not a paper about quantizing gravity. We find that our model has a new type of ground state with a new type of collective excitations. The new collective excitations at low energies are very similar to gravitons at low energies. (So although our paper is not about quantizing gravity, our model may contain emergent gravitons -- a novel property of our quantum spin model.)

Your published many papers of similar type in section "Field Theory and Statistical Systems":

The paper "Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space" is about a quantum system of fermions on a lattice, which has similar effect of fermion in curved space (fermion with gravity)

The paper "The square-lattice quantum liquid of charge c fermions and spin-neutral two-spinon s1 fermions" is about a strongly correlated quantum system on lattice (our lattice model is also a strongly correlated quantum system). The novel ground state and physical properties of the model is then studied (just like our paper which studies the novel properties of the quantum qubit model).

The paper "Form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry" use new mathematical method to obtain the properties of a strongly interacting lattice model. Our paper also develop a new approach which allow us to obtain the low energy properties of the L-type model in our paper reliably.

The paper "Universal properties of frustrated spin systems: 1/N-expansion and renormalization group approaches" studies the properties of a 2D quantum lattice model. While our paper study the properties of a 3D quantum lattice model.

I presented this paper in a recent conference. One of your supervisory editors, H. Ooguri, found the work very interesting.

To summarize, our paper is about the low energy properties of a strongly correlated quantum model on lattice. Your journal has published many papers in this area. We hope you may reconsider our paper.

Best
On 5 Mar 2010 13:04:14 +0000, Nuclear Physics B wrote
> Ms. Ref. No.: NPB-D-10-00084
> Title: Emergence of helicity +/- 2 modes (gravitons) from qubit models
> Nuclear Physics B
> >
> > Dear Professor Wen,
> > > The Supervisory Editors of Nuclear Physics B have now carefully considered
> > your paper and they reached the conclusion that your work falls outside the
> > scope of Nuclear Physics B. Therefore we regret to inform you that we are
> > unable to publish your work in Nuclear Physics B. You are advised to submit
> > your manuscript to a journal like Foundations of Physics.
> > >
> > Thank you for giving us the opportunity to consider your work.
> > >
> > Yours sincerely,
> > >
> > Jeanette Bakker
> > Journal Manager
> > on behalf of the Editors of Nuclear Physics B
> > >
> > Editorial Office Nuclear Physics B
> > Elsevier
> > Radarweg 29
> > 1043 NX Amsterdam
> > The Netherlands
> > >
> > Tel: +31 20 485 2358
> > Fax: +31 20 485 2512
> > E-mail: npb@elsevier.com
> >
> > Xiao-Gang Wen
> > Cecil and Ida Green Professor of Physics
> > Department of Physics, 6C-317
> > Massachusetts Institute of Technology
> > 77 Massachusetts Avenue
> > Cambridge, MA 02139
> > Phone 617-253-5016
> > Fax 617-253-2562
> >
> OpenWebMail version 2.53 Help?