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ABSTRACT: The dynamical theory of the edge excitations of generic fractional quan-

tum Hall (FQH) states is summarized and expanded. The low energy effective theory of

the edge excitations for the most general abelian FQH states (including spin-unpolarized

and multi-layer FQH states) and some non-abelian FQH states is derived using several

different methods. The propagators of the electrons and the quasiparticles are calculated

for the above FQH states. The microscopic theory of the edge excitations for the Laughlin

states is also presented. Some simple applications of the edge theory to the transport prop-

erties of the FQH states are discussed. In particular, the tunneling between edge states is

shown to be a powerful tool to probe the internal topological orders in the FQH states. It

can be used to distinguish different FQH states with the same filling fraction and to detect

the non-abelian FQH states in experiments.
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I. INTRODUCTION

Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard1

open a new era in theory of strongly correlated system. For the first time we have to
completely abandon the theories based on the single-body picture (such as Fermi liquid
theory) and use an intrinsic many-body theory proposed by Laughlin2 and others3 to de-
scribe FQHE. Due to the repulsive interaction and strong correlation between the electrons,
a FQH liquid is an incompressible state despite the first Landau level is only partially filled.
All the bulk excitations in the FQH states have finite energy gaps. The FQH states and
insulators are very similar in the sense that both states have finite energy gap and short
ranged electron propagators. Because of this similarity, people were puzzled by the fact
that the FQH systems apparently have very different transport properties than ordinary
insulators. Halperin first pointed out that the integral quantum Hall (IQH) states con-
tain gapless edge excitations.4 Although the electronic states in the bulk are localized,
the electronic states at the edge of the sample are extended (i.e., the electron propagator
along the edge is long ranged).5 Therefore the nontrivial transport properties of the IQH
states come from the gapless edge excitations.4,6 e.g., a two probe measurement of a QH
sample can result in a finite resistance only when the source and the drain are connected
by the edges. If the source and the drain are not connected by any edge, the two probe
measurement will yield an infinite resistance at zero temperature, a result very similar to
the insulators. The edge transport picture has been supported by many experiments.7
Halperin also studied the dynamical properties of the edge excitations of the IQH states
and found the edge excitations are described by a chiral 1D Fermi liquid theory.

Using the gauge argument in Ref. 8,4,9, one can easily show that FQH states also
support gapless edge excitations. Thus it is natural to conjecture that the transport in
FQH states is also governed by the edge excitations.10,11 However since FQH states are
intrinsicly many-body states, the edge excitations in the FQH states cannot be constructed
from a single-body theory. Or in another word the edge excitations of FQH states should
not be described by Fermi liquid. In this case we need completely new approaches to
understand the dynamical properties of the edge states of FQHE. Recent advances in
fabrication of small devices make it possible to study in detail the dynamical properties of
the edge states in FQHE. Thus it is very important to develop a quantitative theory for
edge states in FQHE to explain new experimental data.

There is another motivation to study the edge states in FQHE. We know that different
FQH states were generally labeled by their filling fractions. However now it becomes clear
that FQH states contain extremely rich internal structures that the filling fraction alone
is not enough to classify all the different universality classes of FQH states.12,13 One can
easily construct different FQH states with the same filling fraction.14,15,16,17 Now we are
facing two problems: A) How to label (or classify) different universality classes of FQH
states? B) How to measure the internal structures of FQH states experimentally. Or in
another word how to distinguish two different FQH states with the same filling fraction?

One way to resolve A) is to use the various construction schemes to label different
FQH states. However this approach is no good because the construction schemes and the
universality classes of FQH states do not have a one to one correspondence. Different
construction schemes some times lead to the same FQH state. One may also try to use
symmetries to classify different FQH states as we did before for many other condensed
matter states. This does not work either because it was shown that different FQH states
are not distinguished by their symmetries.13 In the fact the FQH states represent a new
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kind of universality classes that we have not encountered. A concept of topological order
is introduced to describe this new kind of ordering.12,13 Recent study18,19,20 show that
FQH states can be divided into two classes: abelian FQH states in which quasiparticles
have only Abelian statistics, and non-abelian FQH states in which some quasiparticles
have non-Abelian statistics. It was shown that the abelian FQH states can be labeled by
integer valued symmetric matrices.15,16,17,21 For example, the hierarchy states constructed
by Haldane and Halperin are classified by tri-diagonal matrices with off diagonal elements
±1. One can even show that the topological orders (or the universality classes) in the most
general abelian FQH states are classified21 by the integer valued symmetric matrices with
odd diagonal elements.

Some physical measurements of the topological orders in FQH states through the
ground state degeneracy and the non-Abelian Berry’s phases of FQH states on closed
Riemann surfaces were discussed in Ref. 12,13. However experimentally one can never put
an HQ state on a closed Riemann surface (say a sphere). Thus results in Ref. 12,13 can
only be checked in numerical calculations. The study in Ref. 22,23 indicates that edge
excitations in FQH states provide an important (probably the only practical) probe to
detect the topological orders in the bulk FQH states. Thus the question B) can be an-
swered through the edge states. Using the edge excitations we also can tell whether a FQH
state is an abelian FQH state or a non-abelian FQH state. The edge states provide us a
practical window through which we can look into the internal structures in FQH states.
The measurements of the edge states can provide us new quantum numbers, in addition
to the filling fractions, to characterize different quantum Hall states.

In this paper we are going to summarize and expand the results obtained in Ref. 9,24,22,25,19.
We will derive the low energy effective theory of the edge excitations for most general
abelian FQH states and some non-abelian FQH states. We will also study the generic
quasiparticle and the electron operators and their propagators on the edges of the above
FQH states. Some simple applications of the edge theory to the transport properties of
the FQH states will also be discussed.

For readers who just like to get a simple picture about the edge excitations in the
FQH states may choose to read sections 2.1, 2.3 and chapter 6. Chapter 4 contains a
microscopic theory of the edge excitations in the Laughlin states. The generic structures
of the edge excitations of the (generalized) hierarchical states are discussed in section 2.5
and chapter 3. The edge theory of some non-abelian FQH states is constructed in chapter
5 that extensively uses the parton construction discussed in section 2.4.

2. CHIRAL DYNAMICS OF THE EDGE
EXCITATIONS AND THE KAC-MOODY ALGEBRA

In this section we will review various approach to the dynamics of the edge excitations.
Effects of interactions between edge states will be discussed as well.

2.1 Hydrodynamical approach to the edge excitations

The simplest (but not complete) way to understand the dynamics of the edge exci-
tations is to use the hydrodynamical approach. In this approach, one use the fact that
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QH (IQH or FQH) states are incompressible irrotational liquid that contain no low energy
bulk excitations. Therefore the only low lying excitations (below the bulk energy gap) are
surface waves on a HQ droplet. These surface waves are identified as edge excitations of
the HQ state.26,27,25

In the hydrodynamical approach we first study the classical theory of the surface
wave on the HQ droplet. Then we quantize the classical theory to obtain the quantum
description of the edge excitations. It is amazing that the simple quantum description
obtained from the classical theory provideis a complete description of the edge excitations
at low energies that allow us to calculate the electron and the quasiparticle propagators
along the edges.

Consider a QH droplet with filling fraction ν confined by a smooth potential well (see
Fig. 1). Due to the non-zero conductance, the electric field of the potential well generate
a persistent current flowing along the edge:

~j = σxy ẑ × ~E, σxy = ν
e2

h
(2.1)

This implies that the electrons near the edge drift with a velocity

v =
E

B
c (2.2)

where c is the velocity of the light. Thus the edge wave also propagates with the velocity
v. Let us use one dimensional density ρ(x) = nh(x) to describe the edge wave, where h(x)
is the displacement of the edge, x is the coordinate along the edge, and n = ν

2πl2B
is the two

dimensional electron density in the bulk. We see that the propagation of the edge waves
are described by the following wave equation:

∂tρ− v∂xρ = 0 (2.3)

Notice that the edge waves always propagate in one direction, there are no waves that
propagate in the opposite direction.

The Hamiltonian (i.e., the energy) of the edge waves is given by

H =
∫

dx
1
2
e2hρE =

∫
dx πνvρ2 (2.4)

In the momentum space (2.3) and (2.4) can be rewritten as

ρ̇k =ivkρk

H =2π
v

ν

∑

k>0

ρkρ−k
(2.5)

where ρk =
∫

dx 1√
L

eikxρ(x), and L is the length of the edge. Compare (2.5) with the
standard Hamiltonian equation

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(2.6)
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we find that if we identify ρk|k>0 as the “coordinates”, then the corresponding canonical
“momenta” can be identified as pk = i2πρ−k/νk. We would like to stress that because
the edge waves are chiral, the displacement h(x) contains both the “coordinates” and the
“momenta”.

Knowing the canonical coordinates and momenta, it is easy to quantize the classical
theory. We simply view ρk and pk as operators that satisfy [pk, ρk′] = iδkk′. Thus after
quantization we have

[ρk, ρk′] =
ν

2π
kδk+k′

k, k′ =integer× 2π

L
[H, ρk] =vρk

(2.7)

The above algebra is called the (U(1)) Kac-Moody (K-M) algebra.28 A similar algebra has
also appeared in the Tomonaga model.29 Notice that (2.7) just describes a collection of
decoupled harmonic oscillators (generated by (ρk, ρ−k) ). Thus (2.7) is an one dimensional
free phonon theory (with only a single branch of phonon) and is exactly soluble. We will
show later that (2.7) provides a complete description of the low lying edge excitations of
the HQ state.

To summarize, we find that the edge excitations in the QH states are described by a
free (chiral) phonon theory at low energies. We not only show the existence of the gapless
edge excitations, we also obtain the density of states of the edge excitations. The specific
heat (per unit length) of the edge excitations is found to be π

6
T
v . The edge excitations

considered here do not change the total charge of the system and hence are neutral. In
the following, we will discuss the charged excitations and calculate the electron propagator
from the K-M algebra (2.7).

The low lying charge excitations obviously correspond to adding (removing) electrons
to (from) the edge. Those charged excitations carry integer charges and are created by
electron operators Ψ†. The above theory of the edge excitations is formulated in terms
of 1D density operator ρ(x). So the central question is to write the electron operator in
terms of the density operator. The electron operator on the edge create a localized charge
and should satisfy

[ρ(x), Ψ†(x′)] = δ(x− x′)Ψ†(x′) (2.8)
Since ρ satisfy the Kac-Moody algebra (2.7), one can show that the operators that satisfy
(2.8) are given by24

Ψ ∝ ei 1
ν φ (2.9)

where φ is given by ρ = 1
2π∂xφ.

(2.8) only implies that the operator Ψ carry charge e. In order to identify Ψ as an
electron operator we need to show that Ψ is a fermionic operator. Using the K-M algebra
(2.7) we find that

Ψ(x)Ψ(x′) = (−)1/νΨ(x′)Ψ(x) (2.10)
We see that the electron operator Ψ in (2.9) is fermionic only when 1/ν = m is an odd
integer in which case the QH state is a Laughlin state.24,30

In the above discussion we have made an assumption that is not generally true. We
have assumed that the incompressible QH liquid contain only one component of incom-
pressible fluid which leads to one branch of edge excitations. The above result implies that,

5



when ν 6= 1/m, the edge theory with only one branch do not contain the electron operators
and is not self consistent. Therefore we conclude that the FQH states with ν 6= 1/m must
contain more than one branch of edge excitations. (Here we have ignored the possibility of
the pairing between the electrons.31) Later we will see that the one-branch assumption is
true only for the simple Laughlin states with filling fraction ν = 1/m. In hierarchical FQH
states, there are several condensates that correspond to several components of incompress-
ible fluid. Each component gives rise to a branch of the edge excitations. Thus a generic
QH state may contain many branches of the edge excitations,11,22 even when electrons are
all in the first Landau level.

Now let us calculate electron propagator along the edge of the Laughlin states with
ν = 1/m. In this case the above simple edge theory is valid. Because φ is a free phonon
field with a propagator

〈φ(x, t)φ(0)〉 = −ν ln(x− vt) + const. (2.11)

the electron propagator can be easily calculated as24

G(x, t) = 〈T (Ψ†(x, t)Ψ(0))〉 = exp[
1
ν2 〈φ(x, t)φ(0)〉] ∝ 1

(x− vt)m
(2.12)

Another way to calculate the electron propagator can be found in Ref. 32, where the
oscillator formalism is used.

The first thing we see is that the electron propagator on the edge of FQH state acquires
a non-trivial exponent m = 1/ν that is not equal to one. This implies that the electrons
on the edge of the FQH state are strongly correlated and cannot be described by Fermi
liquid theory. We will call such a new type of electron state chiral Luttinger liquid.

The K-M algebra (2.7) and the electron operator (2.9) provided a complete description
of both neutral and charged edge excitations at low energies. We would like to remark
that the propagator (2.12) is correct only for large x and t. At short distance the form of
the propagator depends on the details of the electron interactions and the edge potentials.
We also like to emphasize that the exponent m of the edge propagator is determined by
the bulk state. Such an exponent is a topological number that is independent of electron
interactions, edge potential etc. . The quantization of the exponent is directly related to
the fact that the exponent is linked to the statistics of the electrons (see (2.10)). Thus the
exponent can be regarded as a quantum number that characterizes the topological orders
in the bulk FQH states.

In the momentum space the electron propagator has a form

G(k, ω) ∝ (vk + ω)m−1

vk − ω
(2.13)

The anormalous exponent m can be measured in tunneling experiments. The tunneling
density of states of electron is given by

N(ω) ∝ |ω|m−1 (2.14)

This implies that deferential conductance has a form dI
dV ∝ V m−1 for a metal-insulator-

FQH junction.
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2.2 Gauge invariance and edge states

In this section we are going to show that the existence of the gapless edge excitations
in the FQH states is a direct consequence of the gauge symmetry of the electromagnetic
field. The dynamics of the edge states also can be derived from the combination of the
gauge invariance and the locality of the FQH theory.9

Consider a QH state in a background magnetic field Āi (Ā0 = 0) with a Hall conduc-
tance σxy = ν e2

h . After integrating out the electrons, we obtain an effective Lagrangian

Leff =
νe2

4π
δAµ∂νδAλεµνλ +

1
4g2

1
(δF0i)

2 − 1
4g2

2
(δF12)2 + . . . (2.15)

where δAµ = Aµ − Āµ is fluctuation around the constant magnetic field and δFµν =
∂µδAν+∂νδAµ is the field strength. The coefficient of the Chern-Simons term δAµ∂νδAλεµνλ

is given by the quantized Hall conductance.

On a compactified space, the action Sbulk =
∫

d3xLeff(δAµ) is invariant under the
gauge transformation. However, on a space with boundary, say, a disc D, Sbulk is not
gauge invariant:

Sbulk(δAµ + ∂µf(x))− Sbulk(δAµ) =
∫

dx0dx
νe2

4π
f δFx0 (2.16)

where x parametrizes the boundary of the disc. Because the microscopic theory is gauge
invariant, (2.16) implies that Sbulk is not the complete action of the FQH states on the
disc. Since the change in Sbulk is just a boundary term, the total gauge invariant effective
action may be obtained by including a boundary action associated with the edge excitations
Stot = Sbulk + Sbd. Under the gauge transformation Sbd should transform as

Sbd(δAµ + ∂µf)− Sbd(δAµ) = −
∫

dx0dx
νe2

4π
fδFx0 (2.17)

so that Stot is gauge invariant. (2.17) implies that the current-current correlation function
of the edge excitations Kαβ(t, x) = i〈0|T (jα(t, x)jβ(0, 0))|0〉, must satisfy (in k-space)

−kαKαβ =
νe2

4π
εαβkα

Kαβ(kα) = Kβα(−kα) = Kαβ∗(−kα)
(2.18)

where α, β = 0, x, k0 = ω, kx = k = 2πn
L is the momentum in x direction, and L is the

length of the edge. We see that the complete action of the FQH states on a disc is given
by Sbulk describing the bulk excitations plus Sbd describing the edge excitations. Sbulk
and Sbd separately are not gauge invariant. But the total action Stot is gauge invariant.

What we would like to do in the following is to use the edge current correlation Kαβ

plus locality condition of the theory to determine some general dynamical properties of
the edge states.

7



First we would like to show that the edge excitations must be gapless. If all the edge
excitations had finite energy gap, then Kα,β(ω, k) would be a smooth function of ω near
ω = 0. If we further assume that the theory is local, Kαβ(ω, k) would be a smooth function

of k near k = 0 (e.g., Kαβ(ω, k) could not behave like Fαβ(ω)
k near k = 0). However one

can easily check that a smooth function of ω and k (near ω = 0 and k = 0) can never
satisfy (2.18). Therefore, for local theories, the condition (2.18) implies the existence of
gapless edge excitations.

Let us assume the edge excitations have many branches labeled by I and Kαβ have
poles at ω = cIk where cI is the velocity of the Ith branch. In this case the current
correlation function Kαβ takes the form: (for small (ω, k))

Kαβ(ω, k) =
∑

I


 γ

αβ
I,k

ω − cIk + iδ
−

γ
βα
I,−k

ω − cIk − iδ


 + P (ω, k) (2.19)

where P (ω, k) is a polynomial of ω and k that comes from the excitations with finite gap.
Here γ

αβ
I,k is non-zero only when cIk ≥ 0 since the excited states always have positive

energies. Plugging (2.19) into (2.5) and using the fact that γ
αβ
I,k only depend on k, we find

that Kαβ must have a form (up to a polynomial in ω and k)

Kαβ =





∑
I

ksgn(cI)ηI

ω−cIk
, (α, β) = (0, 0)

1
2

∑
I

ω+cIk
ω−cIk

sgn(cI)ηI , (α, β) = (x, 0), (0, x)
∑

I
cIωsgn(cI)ηI

ω−cIk
, (α, β) = (x, x)

(2.20)

for small ω and k, where
∑

I

sgn(cI)ηI =
νe2

2π
. (2.21)

From (2.19), (2.20) and the fact that γ00
I,k ≥ 0, we find that ηI > 0.

Each term in the summations in (2.20) arises from gapless edge excitations with velocity
cI . It is convenient to write the current jα as a summation of jα

I :

jα =
∑

I

jα
I (2.22)

such that

K
αβ
IJ ≡ 〈jα

I j
β
J 〉 = δIJ





ksgn(cI)ηI

ω−cIk
, (α, β) = (0, 0)

1
2

ω+cIk
ω−cIk

sgn(cI)ηI , (α, β) = (x, 0), (0, x)
cIωsgn(cI)ηI

ω−cIk
, (α, β) = (x, x)

(2.23)

Therefore jα
I is associated with the gapless excitations with velocity cI . jα

I,k generates a
state with an energy ωk = cIk:

Hjα
I,k|0〉 = cIkjα

I,k|0〉 (2.24)
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where jα
I,k =

∫
dx 1√

L
eixkjα

I (x). From (2.23) we can obtain the vacuum expectation values
of the commutator. We find that

〈0|
[
j+
I,k′, j

+
J,k

]
|0〉 = sgn(cI)ηIkδk+k′δIJ

〈0|
[
j−I,k′, j

+
J,k

]
|0〉 = 〈0|

[
j−I,k′ , j

−
J,k

]
|0〉 = 0.

(2.25)

where j±I = 1
2(j0 ± 1

cI
jx).

Using the locality of the theory, we can further show that (see Ref. 9) (2.24) and (2.25)
imply the operator equations [

H, jα
I,k

]
= cIkjα

I,k (2.26)

and [
j+
I,k′, j

+
J,k

]
= sgn(cI)ηIkδk+k′δIJ[

j+
I,k′, j

−
J,k

]
=

[
j−I,k′, j

−
J,k

]
= 0

(2.27)

in the subspace of states with small momentum k (i.e., klB ¿ 1, where lB is the magnetic
length) and in the limit L → ∞. Therefore the low lying edge excitations form a repre-
sentation of several independent chiral U(1) Kac-Moody algebras.28 The current algebra
(2.27) determines the Hilbert space and (2.26) determines the dynamics of the low lying
edge excitations. When there is only one branch, (2.26) and (2.27) are identical with (2.7)
(notice that j+ is equal to ρk due to the charge conservation).

From the above discussion we find that the gauge invariance condition not only re-
quires the existence of gapless edge excitations, it also determines some general dynamical
properties of the edge states if the theory is local. In particular the specific heat of the
edge excitations is proportional to T as implied by the K-M algebra. Due to its relation to
the gauge invariance, the apparence of the gapless edge excitations is a general property
of the QH states. The gapless edge excitations exist for arbitrary electron interactions,
arbitrary edge potentials and any other perturbations. Certainly, using gauge invariance
alone we cannot determine, say, the number of the edge branches of a FQH state. Such a
property depends on the internal structures of the bulk state. To address this problem we
need first to specify the topological orders in the FQH state.

We also like to point out that the above gauge argument only implies that the edge
excitations must contain one or several U(1) K-M algebras to maintain the gauge invari-
ance. This, however, does not imply that the U(1) K-M algebras describe all the gapless
edge excitations. There are FQH states whose edge excitations contain, in addition to the
K-M algebras, a neutral sector that decouples from the electromagnetic field.

2.3 The edge excitations of generic
FQH states - hierarchical construction

In this section we are going to study structures of the edge states in generic FQH
states. Traditionally, different FQH states were labeled by their filling fractions. However,
it was pointed out that the filling fraction is not sufficient to specify the internal structures
(i.e., the topological orders) in the FQH states.13 At a given filling fraction one can easily
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construct FQH states with completely different topological orders.14,15,16,17,21 Since the
edge state structures are expected to depend on the topological orders in the bulk state,
we need to specify the topological orders in the bulk state before we start to study the
edge states. In the following we will specify the topological orders by explicit construction
the FQH wave function. In this section we will consider the hierarchical construction. In
the next section we will concentrate on the parton construction. A general derivation of
the edge states from the topological orders will be discussed in the section 2.5.

Let us consider the ν = 2
5 FQH state as an example. According to the hierarchical

theory, the ν = 2
5 FQH state is generated by the condensation of the quasiparticles in the

ν = 1
3 FQH state. To be definite let us consider a special edge potential as illustrated in

Fig. 2. In this case the FQH state consists of two droplets, one is the electron condensate
with filling fraction 1

3 and radius r1 and the other is the quasiparticle condensate with
filling fraction 1

15 ( note 1
3 + 1

15 = 2
5) and radius r2.

When r1 − r2 À lB, the two edges are independent. Generalizing the hydrodynamical
approach in section 2.1, we can show that there are two branches of the edge excitations
whose low energy dynamics is described by

[ρIk, ρJk′] =
νI

2π
kδIJδk+k′

H =2π
∑

I,k>0

vI

νI
ρIkρI−k

(2.28)

where I = 1, 2 labels the two branches, (ν1, ν2) = (1
3 , 1

15) are filling fractions of the electron
condensate and the quasiparticle condensate, and vI are the velocity of the edge excitations.
ρI in (2.28) are the 1D electron densities given by ρI = hIνI

2π
l2B

where hI are the amplitude
of the edge waves on the two droplets. As discussed in section 2.2, the gauge invariance of
the electromagnetic field requires νI to satisfy the sum rule

∑
νI = ν (2.29)

(see (2.21) and (2.27)).
Because the electrons are interacting with each other, the edge velocities are determined

by vI = cE∗I/B where E∗I are the effective electric fields that include both the contributions
from the edge potential and the electrons. In order for the Hamiltonian to be bounded
from below, we require νIvI > 0. We find that the stability of the ν = 2

5 FQH state
requires both vI to be positive.

Generalizing the discussion in the section 2.1, we find that the electron operators on
the two edges are given by

ΨI = e
i 1
νI

φI(x)
I = 1, 2 (2.29)

with ∂xφI = 1
2πρI . The electron propagators have the form

〈T (ΨI(x, t)Ψ†I(0))〉 = eikIx 1
(x− vIt)−1/|νI | I = 1, 2 (2.30)

where kI = rI/l2B.
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According to the hierarchical picture the ν = 2
3 FQH state is also formed by two

condensates, an electron condensate with filling fraction 1 and a hole condensate with
filling fraction −1

3 . Thus the above discussion can also be applied to the ν = 2
3 FQH state

by choosing (ν1, ν2) = (1,−1
3). Again there are two branches of the edge excitations but

now with opposite velocities if the Hamiltonian is positive definite. This results, although
surprising, is not difficult to understand. The stability of both the electron droplet and
the hole droplet requires E∗1 and E∗2 to have opposite sign.

As we bring two edges together (r1−r2 ∼ lB) the interaction between the two branches
of the edge excitations can no longer be ignored. In this case the Hamiltonian has a form

H = 2π
∑

IJ,k>0

VIJρIkρJ−k (2.31)

(The Hamiltonian may also contain terms that describe the electron hopping between
edges. But those terms are irrelevant at low energies due to the chiral property of the edge
excitations. For example one can show that those terms can never open an energy gap9)
The Hamiltonian (2.31) can still be diagonalized. For ν1ν2 > 0 we may choose

ρ̃1k = cos(θ)
1√
|ν1|

ρ1k + sin(θ)
1√
|ν2|

ρ2k

ρ̃2k = cos(θ)
1√
|ν2|

ρ2k − sin(θ)
1√
|ν1|

ρ1k

tan(2θ) = 2

√
|ν1ν2|V12

|ν1|V11 − |ν2|V22

(2.32)

One can easily check that

[ρ̃Ik, ρ̃Jk′] =
sgn(νI)

2π
kδIJδk+k′

H =2π
∑

I,k>0

sgn(νI)ṽI ρ̃Ikρ̃I−k
(2.33)

where the new velocities of the edge excitations ṽI are given by

sgn(ν1)ṽ1 =
cos2(θ)
cos(2θ)

|ν1|V11 −
sin2(θ)
cos(2θ)

|ν2|V22

sgn(ν2)ṽ2 =
cos2(θ)
cos(2θ)

|ν2|V22 −
sin2(θ)
cos(2θ)

|ν1|V11

(2.34)

We see that there are still two branches of the edge excitations. However in this case the
edge excitations with a definite velocity are mixtures of those on the inner edge and the
outer edge. One can also show that as long as the Hamiltonian (2.31) is bounded from
below, the velocities of the two branches ṽI are always positive.

By rewriting electron operator ΨI in terms of ρ̃I we find that their propagators are
given by

〈T (ΨI(x, t)Ψ†I(0))〉 = eikIx 1
(x− ṽ1t)αI

1
(x− ṽ2t)βI

(2.35)
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where

(α1, α2) = (
1
|ν1|

cos2 θ,
1
|ν2|

sin2 θ), (β1, β2) = (
1
|ν1|

sin2 θ,
1
|ν2|

cos2 θ) (2.36)

When the two edges are close to each other within the magnetic length, the ΨI are no
longer the most general electron operator on the edge. The generic electron operator may
contain charge transfers between the two edges. For the ν = 2/5 FQH state, the inner
edge and the outer edge are separated by the ν = 1

3 Laughlin state. Thus the elementary
charge transfer operator is given by

η(x) = e
i(φ1−ν1

ν2
φ2) = (Ψ1Ψ

†
2)

ν1 (2.37)

which transfer ν1e = e/3 charge from outer edge to the inner edge. The generic electron
operator then takes the form

Ψ(x) =
+∞∑

n=−∞
cnψn(x)

ψn(x) =Ψ1(x)ηn(x)

(2.38)

To understand this result, we notice that each operator ψn always create an unit localized
charge and is a fermionic operator regardless the value of the integer n. Therefore each
ψn is a candidate for the electron operator on the edge. For a generic interacting system
the electron operator on the edge is expected to be a superposition of different ψn’s as
represented in (2.38). Note Ψ2 = ψ− 1

ν1

. The propagator of ψn can be calculated in the

similar way as in section 2.1 and is given by

〈T (ψn(x, t)ψ†m(0))〉 ∝ δn,mei[k1+nν1(k2−k1)]x
∏

I

(x− ṽIt)
−γIn (2.39)

Where γIn are

γ1n =
[
(n +

1
|ν1|

)
√
|ν1| cos θ − nν1

ν2

√
|ν2| sin θ

]2

γ2n =
[
(n +

1
|ν1|

)
√
|ν1| sin θ +

nν1
ν2

√
|ν2| cos θ

]2 (2.40)

From (2.38) and (2.39) we see that the electron propagator has singularities at discrete
momenta k = k1 + nν1(k2 − k1). It is analogue to the kF , 3kF , ... singularities of the
electron propagator in the interacting 1D electron systems.

For the ν = 2
3 FQH state, ν1ν2 < 0. In this case we need to choose

ρ̃1k =ch(θ)
1√
|ν1|

ρ1k + sh(θ)
1√
|ν2|

ρ2k

ρ̃2k =ch(θ)
1√
|ν2|

ρ2k + sh(θ)
1√
|ν1|

ρ1k

th(2θ) =2

√
|ν1ν2|V12

|ν1|V11 + |ν2|V22

(2.41)
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to diagonalize the Hamiltonian. One can check that ρ̃I also satisfies the K-M algebra (2.33)
but now

sgn(ν1)ṽ1 =
ch2(θ)
ch(2θ)

|ν1|V11 −
sh2(θ)
ch(2θ)

|ν2|V22

sgn(ν2)ṽ2 =
ch2(θ)
ch(2θ)

|ν2|V22 −
sh2(θ)
ch(2θ)

|ν1|V11

(2.42)

Again as long as the Hamiltonian H is positive definite, the velocities of the edge excitations
ṽI always have opposite signs. The electron operator still has the form (2.38) with η =
Ψ1Ψ

†
2
ν1

. The propagator of ψn is still given by (2.39) with

γ1n =
[
(n +

1
|ν1|

)
√
|ν1|chθ +

nν1
ν2

√
|ν2|shθ

]2

γ2n =
[
(n +

1
|ν1|

)
√
|ν1|shθ +

nν1
ν2

√
|ν2|chθ

]2 (2.43)

From (2.40) and (2.43), we see that exponents in the electron propagator depend on
the interedge interactions. However we can show that the exponents satisfy a sum rule:

∑

I

sgn(νI)γIn ≡ λn = (n +
1
|ν1|

)2ν1 +
n2ν2

1
ν2

(2.44)

λn always take odd-integer values and are independent of the details of the electron system.
The quantization of λn is again due to the fact that λn are directly linked to the statistics
of the electrons:

ψn(x)ψn(x′) = (−)λnψn(x′)ψn(x) (2.45)

We would like to point out that the values of λn are determined by the internal correlations
(topological orders) of the bulk FQH state. λn can be changed only by changing the bulk
topological orders through a two dimensional phase transition, despite that they are a
property of 1D edge excitations. Therefore λn are topological quantum numbers that can
be used to characterize and to experimentally measure the 2D bulk topological orders.

The above picture of the edge excitations can be confirmed through numerical calculations.33,34

First we notice that the edge excitations on a circular droplet of a FQH fluid can be la-
beled by the angular momentum ∆M carried by the excitations, where ∆M = M −M0,
M is the total angular momentum of the excited state and M0 the angular momentum of
the ground state. We also notice that the momentum k along the edge and the angular
momentum ∆M are related through Rk = ∆M , where R is the radius of the droplet. If
there are two branches of the edge excitations moving in the same direction, one can show,
from (2.28), that spectrum of the edge excitation should look like the one in Fig. 3a. For
example, the two excited states at ∆M = 1 are given by ρ1,k|0〉 and ρ2,k|0〉 with k = 1

R .
Such a spectrum has been observed in numerical calculations of the ν = 2

5 FQH state on
a circular disc (see Fig. 3b). Fig. 3b is the energy spectrum of a system of 8 electrons in
19 orbits with V1 interaction. The ground state at M = 70 contain 2 quasiparticles.

If the two edge branches have opposite velocities, the spectrum of the edge excitations
should look like the one in Fig. 4a according to (2.28). We find such a spectrum in the
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numerical calculation of the ν = 2
3 FQH state (see Fig. 4b). The ground state at M = 102

contain 12 electrons and 4 holes. The similar results have also been obtained in Ref. 33.

We would like to point out that the above results for the ν = 2/3 FQH state only apply
to the sharp edges. By sharp edge we mean the filling fraction drop from the bulk value
2/3 to zero within a distance of order magnetic length. For very smooth edge potentials
electrons near the edge may form a ν = 1/3 FQH state between the ν = 2/3 FQH state and
vacuum.10 In this case the gapless edge excitations are located near two transition regions,
2/3 → 1/3 and 1/3 → 0. There are three branches of edge excitations (one right-moving
branch and two left-moving branches) on the bounbary between the 2/3 and 1/3 FQH
states and there is one branch of right-moving excitations on the edge of the 1/3 state.

2.4 The edge excitations of generic FQH states - parton construction

In this section we will use the parton construction to obtain the edge excitations of
the generic FQH states.22 Let us first review the parton construction of the bulk FQH
states, using ν = n

mn+1 FQH state as an example.14 The trick is to split the electrons into
m charge ne

mn+1 partons ψα|mα=1 and a charge e
mn+1 parton ψm+1. All the partons have

fermionic statistics and m even. Since each kind of partons has the same density as the
electrons: nα = ψ

†
αψα = ne, the parton ψm+1 have a filling fraction νm+1 = n and the

parton ψα|mα=1 have a filling fraction να = 1. Thus if the partons were independent, the

partons ψm+1 will form a ν = n IQH state described by the wave function χn(z(m+1)
i )

and the partons ψα|mα=1 will form ν = 1 states described by χ1(z
(α)
i ). But in reality

the partons are not independent. By introducing the fictitious particles, the partons, we
introduce some unphysical degrees of freedom, namely the density fluctuations of the form
nα − nα′. In a physical electron states, the densities of the partons always satisfy the
constraint ∑

α

Cαnα = 0, for any
∑
α

Cα = 0

To use the parton picture to describe the real electron states and to obtain the correct
physics for the electrons, we need to make a projection to project away all the unphysical
degrees of freedom. The ground state (trial) wave function Ψ that satisfies the above
constraint can be obtained by doing a projection z

(1)
i = z

(2)
i = ... = zi , where zi are the

electron coordinates:

Ψ(zi) = χn(z(m+1))
m∏

α=1
χ1(z

(α)
i )|

z
(1)
i =...=z

(m+1)
i =zi

(2.46)

The parton construction is very convenient for the construction of the edge excitations.
This is because the projection can be done at the effective theory level.

Let us first discuss the edge excitations in the ν = n
mn+1 FQH state (m is an even

integer). We assume that the FQH state has a disk-like geometry. The edge of the disk
is parameterized by x. We see from the last three sections that the edge excitations are
described by the U(1) K-M algebras. Those edge excitations can be regarded as surface
waves propagating along the edge of the incompressible QH fluid. The surface wave can
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be described by the “edge density” ρ(x) = neh(x) where h(x) is the displacement of the
edge.

Before the projection, all the partons are independent. The charge n
mn+1 = q2 partons

ψα|mα=1 form a να = 1 IQH state and support a single branch of edge excitations for each
α. Those excitations are described by the following K-M algebra

[ρα,k, ρα′,k′] =
k

2π
δk+k′δαα′ (2.47)

where ρα is the edge density of the αth partons. The parton creation operator on the edge
is given by ψα = eiφα for α = 1, ..., m, where ∂xφα = 2πρa. The charge 1

mn+1 = q1 partons
ψm+1 form a ν = n IQH states that support n branches of edge excitations. Those edge
excitations are described by

[ρi,k, ρi′,k′ ] =
k

2π
δk+k′δi,i′, i, i′ = 1, 2, . . . , n (2.48)

where ρi is the edge density of the partons ψm+1 in the ith Landau level. The parton
creation operators on the edge are given by ψi = eiφi with ∂xφi = 2πρi, i = 1, . . . , n.
They carry an electric charge q1. ψi are the partons in the ith Landau level. The coupling
between the edge densities and the external electric potential is given by

e(q2

m∑

α=1
ρα + q1

n∑

i=1
ρi)A0 (2.49)

Before the projection, the Hilbert space of the edge excitations is generated by ρα, ρi, ψα
and ψi with α = 1, ..., m and i = 1, . . . , n, which contains n + m branches.

Because the fluctuations associated with ρ̃C =
∑m

α=1 Cαρα − Cm+1
∑n

i=1 ρi are un-
physical for any Ca satisfying

∑m+1
a=1 Ca = 0, we should remove all such fluctuations to

obtain the correct edge excitations for electrons. To accomplish this, we will first specify
the physical operators. A physical operator must not create any fluctuations associated
with ρ̃C . Hence a physical operator must commute with ρ̃C :

[Ôphy, ρ̃C ] = 0 (2.50)

for any Ca that satisfy
∑m+1

a=1 Ca = 0. One can easily check that the following edge density
operators are physical

j0 =
√

ν(ρ0 +
1
n

n∑

i=1
ρi)

ji =
n∑

j=1
a
j
iρj , i = 1, . . . , n− 1

(2.51)

where ρ0 =
∑m

α=1 ρα. a
j
i in (2.51) are orthogonal vectors satisfy

∑n
j=1 a

j
i = 0 and∑n

j=1 a
j
ia

j
i′ = δi,i′. Similarly the charged physical operators (with the minimum charge)

are given by Ψi = ei(φi+
∑m

α=1
φα), i = 1, . . . , n The operators Ψi carry an electric charge
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e. They are just the electron creation operators on the edge. The Hilbert space of the
physical edge excitations is generated by ji and Ψi, thus contains n branches. We find that
the edge excitations of the ν = n

mn+1 FQH state (obtained from the parton construction)
have n branches.

We would like to remark that there is a gauge symmetry in the above construction.
The gauge symmetry is generated by ρ̃C . (2.50) is just the gauge invariant condition of
the physical operators. The appearance of the gauge symmetry is due to the introduction
of the unphysical degrees of freedom.

From (2.51), (2.47) and (2.48) we see that the physical edge density operators satisfy
the following K-M algebra

[ji,k, ji′,k′ ] =
k

2π
δk+k′δi,i′ i = 0, ..., n− 1 (2.52)

From (2.49) we find that only j0 couples to the electric potential e
√

νj0A0.

Using the algebra (2.47) and (2.48) we can easily calculate the equal time correlations
between Ψi and Ψ†i : 〈Ψ

†
i (x)Ψj(y)〉 ∝ (x− y)−m−1δi,j . The electronic state on the edge is

definitely not a Fermi liquid due to the anomalous exponent in the correlation functions.
We can also show that {Ψi(x), Ψj(y)} = 0. Therefore Ψi are indeed fermionic operators.
We will discuss the charged excitations created by Ψi in more detail in chapter 3.

When n = m = 2, (2.46) describes a ν = 2/5 FQH state. After a proper redefinition of
ρi, one can show that edge excitations (together with the electron operators) described by
(2.52) and (2.28) are identical. This result strongly suggests that the ν = 2/5 FQH states
obtained from the standard hierarchical construction and from the parton construction
belong to the same universality class.

The above results can be easily generalized to the FQH state described by the following
wave function14

Ψ(zi) =
p∏

i=1
χni(zi) (2.53)

where p is odd. The filling fraction of the above state is ν = (
∑p

i=1
1
ni

)−1. The edge
excitations can be shown to have 1 +

∑
i(ni − 1) branches. The electron operators on the

edge have the following propagator

〈Ψ†(x)Ψ(y)〉 ∝ (
1

x− y
)l+p (2.54)

Notice that when ni = 1, (2.53) becomes the Laughlin wave functions. In this case the
above results reduce to the results obtained in Ref. 24 (see also the section 2.1). Clearly
the construction also applies to even more general hierarchy FQH states. For example Ψni

in (2.53) does not have to be an IQH wave function. It can be a FQH wave function with
a filling fraction ν = 1± 1

l .

We would like to remark that the above result is correct only when all non-unit ni are
not equal to each other. If several ni are equal to an integer that is not equal to 1, there
will be a non-abelian symmetry between partons. In this case the edge states are described
by non-abelian K-M algebras. (See Ref. 19 and chapter 5.)
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2.5 Effective theory and the edge states

In this section we will directly derive the macroscopic theory of the edge excitations
from the effective theory of the bulk FQH states.15,30 In this approach we do not rely on a
specify construction of the FQH states. The relation between the bulk topological orders
and edge states also becomes clear in this approach.

We know a hierarchical (or generalized hierarchical) FQH state contains many differ-
ent condensates, the electron condensate form the Laughlin states and the quasiparticle
condensate on top of that form a hierarchical state. Each condensate correspond to one
component of the incompressible fluid. The idea is to generalize the hydrodynamical ap-
proach in the section 2.1 to multi-component fluids and to obtain the low energy effective
theory of the edge excitations. To accomplish this, we first would like to write down the
low energy effective theory of the bulk FQH state. The effective theory should contain the
information about the topological orders in the bulk states.

The different condensates in the FQH states are not independent. The particles in one
condensate behave like a flux tube to the particles in other condensates. To describe such
a coupling, it is convenient to use U(1) gauge fields to describe the density and the current
of each condensate. In this case the couplings between different condensates are described
by Chern-Simons term of the gauge fields.35,15,17,21 By some further consideration of the
electron operators in the effective theory, it was shown21 that the most general abelian
FQH states of the electrons are classified by integer valued symmetry matrix K with odd
diagonal elements and are described by the following effective theory36

L =
1
4π

KIJaI∂aJ + aI · jI +
1
2π

A∂aI + gIJfI · fJ (2.55)

where aI∂aJ is a short hand notation for aIµ∂νaJλεµνλ, µ, ν, λ = 0, 1, 2 and fIαβ is field
strongth of the U(1) gauge field aIµ. The FQH state described by (2.55) contain κ different
condensates and there are κ kinds of different quasiparticle excitations, where κ is the rank
of K. jIµ is the density and the current of the Ith kind of excited quasiparticles (denoted
by ψI) that behaves like vortices in the condensates. jIµ are normalized such that

∫
dxjI0

are integers. The density and the current of the Ith component of incompressible fluid
(i.e., the Ith condensate) is given by

JIµ =
1
4π

εµαβfIαβ (2.56)

The filling fraction of the FQH state is

ν =
∑

IJ

(K−1)IJ (2.57)

As we create an J th quasiparticle ψJ , it will induce a change in the density of the Ith

condensates, δJI0. From the equation of motion we find that δJI0 satisfy
∫

d2xδJI0 = (K−1)JI (2.58)
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(Note
∫

d2xjJ0 = 1 in presence of the J th quasiparticle.) The charge and the satistics of
the J th quasiparticle is given by

θJ = π(K−1)JJ , qJ =
∑

I

(K−1)JI (2.59)

A generic electron excitation can be written as a bound state of the quasiparticles:

je =
∑

I,J

LIKIJjJ (2.60)

where LI are integers satisfying
∑

I LI = 1. From (2.4.2) we can easily show that electron
excitations in (2.60) satisfy the following properties: A) They carry an unit charge (see
(2.59). B) They have the fermionic statistics. C) Moving an electron excitation defined in
(2.60) around any quasiparticle excitations always induces a phase of multiple of 2π. D)
The excitations defined in (2.60) are all the excitations satisfying the above three condition.
For a more detailed discussion, see Ref. 21.

We would like to point out that the effective theory (2.55) not only applies to the
standard QH system in which all electrons are spin polarized and in the first Landau level,
it also applies to the QH system in which electrons may occupy several Landau levels
and/or occupy several layers and/or carry different spins. In this case the index I may
label the condensates in different Landau levels, in different layers and/or with different
spins. The edge excitations for the spin 1/2 electron system was discussed in Ref. 9,37.

To understand the relation between the effective theory and the edge states, let us
first consider the simplest FQH state of the filling fraction ν = 1/q and try to rederive
the results in section 2.1 from the bulk effective theory. Such a FQH state is described by
U(1) Chern-Simons theory with the action:13,30

S =
q

4π

∫
a∂ad3x (2.61)

Suppose that our sample has a boundary. For the simplicity we shall assume that the
boundary is the x-axis and the sample is the lower half-plane. The Chern-Simons action is
not invariant under gauge transformations aµ → aµ +∂µf due to the boundary effects. To
solve this problem we will restrict the gauge transformations to be zero on the boundary
f(x, y = 0) = 0. Due to this restriction some degrees of freedom of aµ on the boundary
become dynamical. We know the effective theory (2.61) is derived only for a bulk FQH
state without boundary. We will take (2.61) with the restricted gauge transformation as
the definition of the effective theory for a FQH state with boundary. Such a definition is
definitely self consistent. In the following we will show that such a definition reproduces
the results obtained in section 2.1.

One way to study the dynamics of a gauge theory is to choose the gauge condition
a0 = 0 and regard the equation of motion for a0 as a constraint. For the Chern-Simons
theory such a constraint becomes fij = 0. Thus we write ai as ai = ∂iφ. Plug this into
(2.61), one obtains38 an effective conformal theory on the edge with an action

Sedge =
m

4π

∫
∂tφ∂xφdxdt (2.62)
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This approach, however has a setback. It is easy to see that a Hamiltonian associated with
the action (2.62) is zero and the boundary excitations described by eq. (2.62) have zero
velocity. Therefore this action cannot be used to describe any physical edge excitations
connected with the FQHE. The edge excitations in the FQH states always have finite
velocities.

The appearance of finite velocities of edge excitations is a boundary effect. The bulk
effective theory defined by eq. (2.55) does not contain the information about the velocities
of the edge excitations. The edge velocities in the QH states are actually determined by
the edge potentials. To determine the dynamics of the edge excitations from the effective
theory we must find a way to input the information about the edge velocity. The edge
velocities must be treated as the external parameters that are not contained in the bulk
effective theory. The problem is how to put in these parameters in the theory.

Let us now note that the condition a0 = 0 is not a unique choice of the gauge fixing
condition. More general gauge fixing condition has a form

aτ = a0 + vax = 0 (2.63)

Here ax are the component of the vector potential parallel to the boundary of the sample
and v is a parameter that has a dimension of velocity.

It is convenient to choose new coordinates that satisfy

x̃ = x− vt

t̃ = t, ỹ = y
(2.64)

In these coordinates the components of the gauge field are given by

ãt̃ =at + vax

ãx̃ =ax

ãỹ =ay

(2.65)

The gauge fixing condition becomes the one discussed before. It is easy to see that the
form of the Chern-Simons action is preserved in the new coordinates:

S =
q

4π

∫
d3x aµ∂νaλεµνλ =

q

4π

∫
d3x ãµ̃∂ν̃ ã

λ̃
εµ̃ν̃λ̃ (2.66)

Repeating the previous derivation, we find the edge action is given by

S =
q

4π

∫
dt̃dx̃∂t̃φ∂x̃φ (2.67)

In terms of the original physical coordinates the above action acquires a form

S =
q

4π

∫
dtdx(∂t + v∂x)φ∂xφ (2.68)

which is a chiral boson theory. It is easy to see that the edge excitation described by (2.68)
have a non-zero velocity. The quantization of chiral boson theory has been discussed in
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detail in Ref. 39. The canonical momentum π(x) is equal to π = δL
δφt

= q
4π∂xφ. The

coordinate φ and momentum π obey the commutation relations:

[π(x), φ(y)] =
1
2
δ(x− y)

[φ(x), φ(y)] =
π

q
sgn(x− y)

(2.69)

The Hamiltonian of the theory (2.68) is given by

H = − qv

4π

∫
dx∂xφ∂xφ (2.70)

The Hilbert space contains only left-moving degrees of freedom (or right moving degrees
of freedom if v < 0). The theory (2.69) and (2.70) describes free left (or right) moving
phonons (i.e., the edge density waves). One can easily show that (2.69) and (2.70) are
equivalent to the K-M algebra (2.7) by identifying ρ = 1

2π∂xφ.

In the following we would like to show that ρ = 1
2π∂xφ can really be interpreted as the

1D electron density on the edge. First we notice that the coupling between the electrons
and the external electromagnetic potential is given by

∫
AµJµd3x =

∫ 1
2πA∂ad3x (see

(2.56)). From ãĩ = ∂ĩφ we see that
∫

AµJµd3x =
∫

dx̃dt̃
1
2π

At̃∂x̃φ =
∫

dxdt
1
2π

(At + vAx)∂xφ (2.71)

where we have used the equation of motion (∂t + v∂x)φ = 0 and the transformation (2.64)
and (2.65). (2.71) clearly indicates that the 1D edge electron density is given by 1

2π∂xφ = ρ.

The velocity of the edge excitations v enters our theory through the gauge fixing con-
dition. Notice that under the restricted gauge transformations the gauge fixing conditions
(2.63) with different v cannot be transformed into each other. They are physically in-
equivalent. This agrees with our result that v in the gauge fixing condition is physical and
actually determines the velocity of the edge excitations.

The Hamiltonian (2.70) is bounded from below only when vq < 0. The consistency of
our theory requires v and q to have opposite signs. Therefore the sign of the velocity (the
chirality) of the edge excitations is determined by the sign of the coefficient in front of the
Chern-Simons terms.

The above results can be easily generalized to the generic FQH states described by
(2.55) because the matrix K can be diagonalized. The resulting effective edge theory has
a form

Sedge =
1
4π

∫
dt dx[KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ] (2.72)

The Hamiltonian is given by

Hedge =
1
4π

∫
dt dxVIJ∂xφI∂xφJ (2.73)

Therefore V must a positive definite matrix. Using this result one can show that a positive
eigenvalue of K corresponds to a left moving branch and a negative eigenvalue corresponds
to a right moving one.
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The effective theory of the ν = 2/5 FQH state is given by21

K =
(

3 2
2 3

)
(2.74)

Since K have two positive eigenvalues, the edge excitations of the ν = 2/5 FQH state have
two branches moving in the same direction. The ν = 1− 1

n FQH state is described by the
effective theory with

K =
(

1 0
0 −n

)
(2.75)

The two eigenvalues of K now have opposite sign, hence the two branches of the edge
excitations move in opposite directions. This prediction was suggested in Ref. 40 and has
been confirmed by numerical calculations.33,34

3. CHARGED EXCITATIONS AND ELECTRON
PROPAGATOR ON THE EDGES OF GENERIC FQH STATES

In the last chapter we studied dynamics of the edge excitations of the FQH effects
at low energies. We found that the low lying edge excitations are described by a free
phonon theory that is exactly soluble. In this chapter we will concentrated on the generic
charge excitations. In particular we will calculate the propagators of the electrons and the
quasiparticles for the most general (abelian) FQH state discussed in Ref. 21 and in chapter
2.4. The key point is again to write the electron or the quasiparticle operators in terms of
the phonon operator ρI . Once we do so, the propagators can be easily calculated because
the phonons are free (at low energies and long wave length).

We know for a FQH state described by (2.55), the edge states are described by the
action (2.72). The Hilbert space of the edge excitations forms a representation of K-M
algebra

[ρIk, ρJk′ ] =(K−1)IJ
1
2π

kδk+k′

k, k′ =integer× 2π

L

(3.1)

where ρI = 1
2π∂xφI is the edge density of the Ith condensate in the FQH state ,I, J =

1, ..., κ, and κ is the dimension of K. The electron density on the edge is given by

ρe =
∑

I

ρI (3.2)

The dynamics of the edge excitations are described by the Hamiltonian:

H = 2π
∑

IJ

VIJρI,kρJ,−k (3.3)

where VIJ is a positive definite matrix.
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Let us first try to write down the Ith
0 quasiparticle operator ψI0

. We know that
inserting the quasiparticle on the edge will cause a change δρI in the edge density of the
Ith condensate (see (2.58)) that satisfies

∫
dxδρI = (K−1)I0I . (3.4)

Because ψI0
is a local operator that only causes a local change of the density, we have

[ρI(x), ψI0
(x′)] = (K−1)I0Iδ(x− x′)ψI0

(x′) (3.5)

Using the Kac-Moody algebra (3.1) one can show that the quasiparticle operators that
satisfy (3.5) are given by

ψI0
∝ eiφI0 (3.6)

The charge of the quasiparticle ψI0
is determined from the commutator [ρe, ψI0

] and is
given by

qI0
=

∑

I

(K−1)II0
(3.7)

We known that any excitations in the FQH states (include the electrons) can be con-
structed from the fundamental quasiparticle excitations ψI discussed above. From (2.60)
we see that the electron operator can be written as

Ψe,L ∝
∏

I

ψlI
I ∝ ei

∑
I
lIφI

lI =
∑

J

KIJLJ

∑

I

LI =1

(3.8)

The above operators carry unit charge as one can see from (3.7). The commutation of the
Ψe,L can be calculated as

Ψe,L(x)Ψe,L(x′) = (−)λΨe,L(x′)Ψe,L(x)

λ =
∑

IJ

LIKIJLJ
(3.9)

Because the diagonal elements of K are odd integers, we can shown that (−)λ = −1. This
is the expected result for electron operators.

Since all the operators Ψe,L for different choice of LI carry unit charge and are
fermionic, so each Ψe,L can be a candidate for the electron operators. In general the
true electron operator is a superposition of Ψe,L’s:

Ψe =
∑

L

CLΨe,L (3.10)
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In this paper when we say there are many different electron operators on the edge, we really
mean that the true physical electron operator is a superposition of the those operators.

Using the K-M algebra (3.1) and the Hamiltonian (3.3), we can calculate the propa-
gators of generic quasiparticle operator

Ψl ∝ ei
∑

I
lIφI (3.11)

(which include the electron operators for suitable choice of l). First we notice that after a
suitable redefinition of ρI :

ρ̃I =
∑

J

UIJρJ (3.12)

K and V can be simultaneously diagonalized, i.e., in terms of ρ̃I (3.1) and (3.3) become

[ρ̃Ik, ρ̃Jk′] =σIδIJ
1
2π

kδk+k′

H =2π
∑

I

|vI |ρ̃I,kρ̃I,−k
(3.13)

where σI = ±1 is the sign of the eigenvalues of K. The velocity of the edge excitations
created by ρ̃I is given by vI = σI |vI |.

To prove the above result we first redefine ρI to transform V into the identity matrix:
V → U1V UT

1 = 1. This is possible because V is a positive definite symmetric matrix.
Now K becomes a new symmetric matrix K1 = U1KUT

1 whose eigenvalues have the same
sign as the eigenvalues of K (although the absolute values may differ). Than we make an
orthogonal transformation to diagonalize K1: (K1)IJ → σI |vI |δIJ . After a trivial rescaling
of the densities, we obtain (3.13). In terms of ρ̃I the operators Ψl has a form

Ψl ∝ ei
∑

I
l̃I φ̃I

l̃J =
∑

I

lIU
−1
IJ

(3.14)

Form (3.13) and (3.14) we see that the propagator of Ψl has the following general form

〈Ψ†l (x, t)Ψl(0)〉 ∝ eilIkIx
∏

I

(x− vIt + iσIδ)
−γI , γI = l̃2I (3.15)

where vI = σI |vI | is the velocities of the edge excitations and kI is momentum of the Ith

quasiparticle ψI on the edge. γI in (3.15) satisfy the sum rule
∑

I

σIγI ≡ λl =
∑

lIK
−1
IJ lJ (3.16)

In order to prove the above sum rule, we have used the relation

(UKUT )IJ = σIδIJ (3.17)
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From (3.9) and (3.16) we see that the sum rule is directly related to the statistics of Ψl
and λl is a topological quantum number. If Ψl represent the electron operator, λl will
be an odd integer. From (3.15) we also see that the operator Ψl creat an excitation with
momentum near

∑
I lIkI .

Now let discuss the hierarchical states with filling fractions ν = p
pq+1 (q =even) in

more detail. Those states include ν = 2/5, 3/7, 2/9, ... FQH states. The hierarchical states
with ν = p

pq+1 is described by p by p matrices K = 1+ qC, where C is the pseudo identity
matrix: CIJ = 1, I, J = 1, ..., p. We have K−1 = 1 − q

pq+1C. Because all the edge
excitations move in the same direction, we have

〈Ψ†l (x = 0, t)Ψl(0)〉 ∝ t−λl (3.18)

where λl is given by (3.16). The fundamental quasiparticle is given by lT = (1, 0, ..., 0) that
carries charge 1

pq+1 . The exponent in its propagator is λl = 1 − q
pq+1 . The quasiparticle

with the smallest exponent is given by lT = (1, ..., 1) that carries charge p
pq+1 . The

exponent is λl = p
pq+1 that is less than 1 − q

pq+1 (note we have q ≥ 2 and p ≥ 1). Later
in section 6.2, we will see that such a charge p

pq+1 quasiparticle dominate the tunneling
between two edges of the same FQH fluid at low energies.

The electron operators are given by Ψe,L with l satisfying
∑

I lI = pq+1. The exponent
in the propagator is given by λl =

∑
l2I − q(pq + 1). The electron operator with minimum

exponent in its propagator is given by l = (q, ..., q, q + 1). The value of the minimum
exponent is λl = q + 1. Such an electron operator dominate the tunneling between edges
of two different FQH fluid at low energies.

In section 2.5 we argued that the edge excitations of the a FQH state characterized by
a matrix K are described by the U(1) K-M algebras characterized by the same matrix (see
(3.1)). This result is correct only for sharp edges. For the smooth edges the filling fraction
may not drop to zero directly near the edge, but through several intermediate FQH states.
Such a composite edge in general contain more branches of edge excitations. However the
new edge branches always appear in pairs (one left moving and one right moving). The
edge excitations on a smooth edge are in general described by the following matrix:

Kedge = Kbulk ⊕
(

K ′ 0
0 −K ′

)

where Kbulk is the matrix characterizing the bulk FQH state and K ′ is another integer
matrix that depend on the edge potential. For the 2/3 edge (2/3 → 1/3 → 0) discussed at
the end of section 2.3, the edge excitations are described by

Kedge =



−3

1
−3

3



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IV. MICROSCOPIC THEORY OF THE EDGE
EXCITATIONS OF THE LAUGHLIN STATE

In the last two chapters we developed the effective low energy theory of the edge
excitations for the most generic abelian FQH states. In this chapter we will present a
microscopic theory for the edge excitations in the Laughlin states. Haldane pointed out
that the edge excitations of the Laughlin states can be generated by multiplying symmetric
polynomials to the Laughlin wave functions.26 Stone studied the structures of the Hilbert
space for the ν = 1 IQH state using the symmetric polynomials.27 In the following we will
generalize Stone’s results to the Laughlin states.

To be specific, let us consider an electron gas in first Landau level. We choose V (~r) ∝
∂2δ(~r) as the interactions between electrons. Because A) HV =

∑
ij V (~ri − ~rj) is positive

definite (i.e., 〈ψ|HV |ψ〉 ≥ 0 for any |ψ〉) and B) HV have zero expectation value when all
pairs of electron have relative angular momentum m ≥ 3, thus the ν = 1/3 Laughlin wave
function

Φ3(zi) = Z−1/2
∏

i<j

(zi − zj)
3
∏

k

e−
1
4 |zk|2 (4.1)

has zero energy and is an exact ground state of our Hamiltonian. In (4.1) Z is the nor-
malization factor. However the Laughlin state (4.1) is not the only state with zero energy.
One can easily check that the following type of states all have zero energy:

Φ(zi) = P (zi)Φ3(zi) (4.2)

where P (zi) is a symmetric polynomial of zi. In the fact the reverse is also true: all the
zero energy states are of form (4.2). This is because in order for a fermion state to have
zero energy, Φ must vanishes at least as fast as (zi − zj)3 when any two electrons i and
j are brought together (the possibility (zi − zj)2 is excluded by the fermion satistics).
Because the Laughlin wave function is zero only when zi = zj therefore P = Φ/Φ3 is a
finite function. Since Φ and Φ3 are both antisymmetric functions in the first Landau level,
P is symmetric holomophic function that can only be a symmetric polynomial.

Among all the states in (4.2), the Laughlin state describe a circular droplet with
smallest radius. All other states are deformation and/or inflation of the droplet of the
Laughlin state. Thus the states generated by P correspond to the edge excitations of the
Laughlin state.

Now let us first consider the zero energy space (i.e., the space of symmetric poly-
nomials). We know the space of symmetric polynomials is generated by the following
polynomials sn =

∑
i zn

i (through multiplication and addition). Let M0 = 3N(N−1)
2 be

the total angular momentum of the Laughlin state (4.1). Then the state Φ will have an
angular momentum M = ∆M + M0 where ∆M is the order of the symmetric polynomial
P . Since we have only one order-zero and order-one symmetric polynomial s0 = 1 and
s1 =

∑
i zi, thus the zero energy states for ∆M = 0, 1 are non-degenerate. However when

∆M = 2 we have two zero energy states generated by P = s2 and P = s2
1. For general

∆M the degeneracy of the zero energy states is given by

∆M : 0 1 2 3 4 5 6
degeneracy : 1 1 2 3 5 7 11 (4.3)
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Here we would like to point out that the degeneracy in (4.3) is exactly what we expected
from the macroscopic theory. We know for a circular droplet, the angular momentum ∆M
can be regarded as the momentum along the edge k = 2π∆M/L where L is the premeter
of the QH droplet. According to the macroscopic theory the (neutral) edge excitations are
generated by the density operators ρk. One can easily check that the edge states generated
by the density operators have same degeneracies as those in (4.3) for every ∆M . e.g., the
two state at ∆M = 2 is generated by ρ2

κ0
and ρ2κ0

where κ0 = 2π/L. Therefore the
space generated by the K-M algebra (2.7) and the space of the symmetric polynomials are
identical.

Now let us ask a physical question. Are the symmetric polynomials generate all the
low energy states? If this is true, then from the above discussion we see that all the low
energy excitations of the HQ droplet are generated by the K-M algebra and we can say
that (2.7) is a complete theory of the low lying excitations. Unfortunately up to now we
do not have an analytic proof of the above statement. This is because although states
orthogonal to the states generated by the symmetric polynomials have non-zero energies,
it is not clear that those energies remain finite in the thermodynamical limit. It is possible
that the energy gap approaches to zero in the thermodynamical limit. To resolve this
problem, right now we have to rely on numerical calculations. In Fig. 5 we present the
energy spectrum of a system of six electron in the first 22 orbits for the Hamiltonian
introduced at the beginning of this chapter. The degeneracies of the zero energy states at
M = 45, ..., 51 (or ∆M = 0, ..., 6) are found to be 1, 1, 2, 3, 5, 7, 11, which agrees with (4.3).
More importantly we see clearly a finite energy gap separate all other states from the zero
energy states. Thus the numerical results imply that all the low lying edge excitations of
the Laughlin state are generated by the symmetric polynomials or the K-M algebra (2.7).

In the following we are going to derive the relation between the generators of the
symmetric polynomials, sn, and the generators of the K-M algebra, ρnκ0 . To find the
relation between those operators, we need to study the inner-product in the two Hilbert
spaces. The inner-product in the space generated by the K-M algebra is known. In the
following we will use the plasma analogue to calculate the inter-product in the space
generated by the symmetric polynomials.

As we will see later that it is more convenient to study the edge states generated by

ψ(zi; ξ) =
∏

i

(1− zi

ξ
) (4.4)

the symmetric function ψ(ξ) is related to the generators sn through

ψ(zi; ξ) = exp(−
∑

n>0

1
n

ξ−nsn) (4.5)

First we would like to calculate the norm of the state generated by ψ(ξ)

〈ψn(ξ)|ψn(ξ)〉 =|ξ|−2NnZ1
Z

Z =
∫ ∏

d2zi exp(
∑

ij

2m ln |zi − zj | −
∑

k

1
2
|zk|2)

Z1 =
∫ ∏

d2zi exp[
∑

ij

2m ln |zi − zj |+
∑

k

(−1
2
|zk|2 + 2n ln |ξ − zk)]

(4.6)
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where m = 1/ν for the ν = 1/m Laughlin state and |ψn(ξ)〉 = ψn(zi, ξ)Φm(zi). Notice
that Z is the partition function of one component plasma, and Z1 is the partition function
of the plasma interacting with a charge at ξ. If we ingore the discreteness of the charges
and treat the plasma as a continuous medium, we may write

Z = eE , Z1 = eE1 (4.7)

where E and E1 are the total energies of the plasma. We expect the above approximation
gives rise to the right radio Z1/Z if ξ is not so close to the droplet, i.e., |ξ| −R À 1 where
R =

√
mN is the radius of the droplet.

The plasma behave like a metal. Thus the change in energy as we add an external
charge is given by

E1 − E = 2nN ln |ξ| − n2

m

[
ln(|ξ| − R2

|ξ| )− ln(|ξ|)
]

+ O(N−1) (4.8)

We know the external charge change the shape of the droplet. The first term in (4.8)
is the interaction between the external charge and the undeformed droplet. The second
term is the correction due to the deformation of the droplet. This correction can be
represented by the interaction of the external charge with its mirror images. We notice
that E1 − E → 2nN ln |ξ| as ξ →∞. From (4.8) we find the norm of |ψn(ξ)〉 to be

〈ψn(ξ)|ψn(ξ)〉 =
(

ξξ∗
ξξ∗ −R2

)n2/m

(4.9)

Because the inner-product 〈ψn(ξ̃)|ψn(ξ)〉 is a holomophic function of ξ and an anti-
holomophic function of ξ̃, thus (4.9) implies that

〈ψn(ξ̃)|ψn(ξ)〉 =

(
ξξ̃∗

ξξ̃∗ −R2

)n2/m

(4.10)

We can also show a more general results useing a similar calculation

〈
∏

i

ψni(ξ̃i)|
∏

i

ψni(ξi)〉 =
∏

i,j

(
ξiξ̃

∗
j

ξiξ̃
∗
j −R2

)ninj/m

(4.11)

Now let us consider the following operator in the K-M algebra

ψKM (ξ) = exp(−
∑

n>0

1
n

√
2πRn+ 1

2 ρnκ0ξ
−n) (4.12)

where κ0 = 1/R. Using the K-M algebra we can easily show that the states generated by
ψKM also have an inner-product of the form given by (4.11):

〈0|
∏

i

ψ
†ni

KM (ξ̃i)
∏

i

ψni

KM (ξi)|0〉 =
∏

i,j

(
ξiξ̃

∗
j

ξiξ̃
∗
j −R2

)ninj/m

(4.13)
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Because both the operators ψ(ξ) and ψKM (ξ) generate the whole Hilbert spaces and
because (4.11) and (4.13) imply that ψ(ξ) and ψKM (ξ) have the same matrix elements,
we conclude that the symmetric functions ψ(ξ) correspond to the operator ψKM (ξ) in the
K-M algebra. From (4.5) and (4.12) we find the following simple relation between the two
sets of generators:

sn =
√

2πRn+ 1
2 ρk, k = nκ0 =

n

R
(4.14)

Notice that

ξNmξ̃∗Nm〈ψm(ξ̃)|ψm(ξ)〉 = ξNmξ̃∗Nm

(
ξξ̃∗

ξξ̃∗ −R2

)m

(4.15)

is proportional to the electron propagator Ge along the edge of a Ne = N + 1 electron
system at equal time. Choosing ξ = Rei2π x

L and ξ̃ = R, we get

Ge(x) = L−mam−1eim(Ne− 1
2 ) 2πx

L sin−m(πx/L) (4.16)

that reduces to (2.12) when x is much less than L. Here a is a length scale of order lB.
(4.16) can be expanded:

Ge(x) =L−mam−1eim(Ne−1) 2πx
L

[ ∞∑

n=0
e−i 2πx

L n

]m

=L−mam−1eim(Ne−1) 2πx
L

∞∑

n=0
Cn

m+n−1e
−i2πx

L n

Cn
m+n−1 =

(n + m− 1)!
(m− 1)!n!

(4.17)

From this expansion we obtain the electron occupation number nM at the angular mo-
mentum M state:

nM = 0, M > m(Ne − 1)

nM =
am−1

Lm−1C
m(Ne−1)−M
mNe−M−1 , M ≤ m(Ne − 1)

(4.18)

We see that exact position of the Fermi edge is at the last partially occupied single-
particle obit, i.e., at angular momentum m(Ne − 1) (or kF =

√
m(Ne − 1)/lB). Note

when m(Ne− 1)−M À m, nM ∝ (m(Ne− 1)−M)m−1. Or in terms of momentum along
the edge, we have nk ∝ (kF−k)m−1 and nk does not have a jump at the Fermi momentum.
The electron occupation number nM has been studied numerically in Ref. 41,33,42.

We would like to remark that (4.16) is correct only when x is much larger than the
magnetic length lB . Therefore (4.18) is valid only when m(Ne − 1)−M ¿ √

Ne.
If the dispertion of the edge excitations is linear, Ge can only depend on x− vt at low

energies. We immediately see that

Ge(x, t) = L−mam−1eim(N− 1
2 ) 2π(x−vt)

L sin−m[π(x− vt)/L] (4.19)
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The result (4.16) is also supported by a numerical calculation. In Fig. 6 we present a
numerical result of the electron propagator on the edge for the ν = 1

2 Laughlin state of 36
bosons. The solid line is the theoretical result (4.16).

In summary we develop the microscopic theory of the edge excitations of the Laughlin
states. From the above discussion, one can see that the Hilbert space (together with
the inner-product) of the edge excitations is identical with the Hilbert space of the K-M
algebra. The operators in the two Hilbert spaces are related in a simple way (see (4.14)).
The electron occupation number nM near the edge was also calculated exactly.

5. EDGE EXCITATIONS OF NON-ABELIAN QH STATES

It is now known that there are two classes of QH states, abelian QH states whose
quasiparticles all have abelian statistics and non-abelian QH states18,19,20 that contain
some quasiparticles with non-abelian statistics.43 In the following we will briefly study the
edge excitations of some non-abelian QH states.

A class of non-abelian QH states is represented by wave functions19

χ
p
1(zi)[χm(zi)]

n (5.1)

whose filling fraction is ν = (p + m
n )−1. In (5.1), p + n is an odd integer and χm is the

fermion wave function with m filled Landau levels. The electrons in this wave function
stay within the first n(m− 1) + 1 Landau levels. There are local Hamiltonians such that
(5.1) is an exact ground state.

The non-abelian QH state represented by (5.1) contain a quasiparticle excitation with
charge n

pnm+m2 . Such a quasiparticle can be shown to carry a non-abelian statistics de-
scribed by the SU(n) level m, or in short SU(n)m, Chern-Simons theory. For more detailed
discussions see Ref. 19 and 20.

We can also view the Landau level indices as the layer indices and write the related
wave functions for multilayered electron systems.20 More general non-abelian states were
discussed in Ref. 20. In general the non-abelian QH states are most likely to appear in
multilayer systems and/or in systems with small energy gaps between Landau levels. The
simplest non-abelian FQH state is represented by the wave function χ1χ

2
2 that has a filling

fraction ν = 1
2 . Such a non-abelian FQH state may appear in three-layer electron systems.

A different class of non-abelian QH states was suggested in Ref. 18.

To understand the edge states of the non-abelian QH states, let us first concentrate
on the non-abelian state described by [χm]n. Note such a state can be obtained through
the parton construction14 by “splitting” electrons into n charge 1/n partons. Therefore
it is convenient to use the method discussed in section 2.4 to construct the edge states of
non-abelian states. Let us use α = 1, ..., n to label different partons. We first assume that
all partons are independent, and thus the ground state wave function is given by

n∏

α=1
χm(z(α)

i ) (5.2)
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where z
(α)
i is the coordinates of the αth kind of the partons. The original electron wave

function [χm(zi)]n is obtained by doing the projection z
(1)
i = ... = z

(n)
i = zi. Before the

projection the state (5.2) is just n independent IQH states each with filling fraction m
and contain mn branches of edge excitations that is described by the following low energy
effective theory in 1D:

L =
∑
α,a

iψαa†(x, t)(∂t − v∂x)ψαa(x, t) (5.3)

where ψαa, a = 1, ..., m, are charge 1/n fermion fields that describe the ath edge branch
of the αth kind of the partons. (Note that each kind of the partons forms the ν = m IQH
state that contains m branches of edge excitations.)

Within the effective theory (5.3) we can define three densities J(x) = 1
n

∑
αa ψαa†(x)ψαa(x),

js(x) =
∑

α,a,b ψαa†(x)T s
abψ

αb(x) and j̃s̃(x) =
∑

α,β,a ψαa†(x)T̃ s̃
αβψβa(x), where T s

ab (T̃ s̃
αβ)

is generators of the SU(m) (SU(n)) Lie algebra. J is the electric charge density of the
edge excitations and js and j̃s̃ represent the densities of non-abelian charges associated
with the Landau levels and the partons respectively. The above three densities satisfy the
U(1)× SU(m)n × SU(n)m K-M algebra:44

[Jk, Jk′] =
m

2πn
kδk+k′

[jr
k, js

k′] =
n

4π
kδr,sδk+k′ + L−

1
2 frstjt

k+k′

[j̃ r̃
k, j̃s̃

k′] =
m

4π
kδr̃,s̃δk+k′ + L−

1
2 f̃ r̃s̃t̃j̃ t̃

k+k′

(5.4)

where frst (f̃ r̃s̃t̃) is the structure constant of the SU(m) (SU(n)) Lie algebra. J , j and j̃
commute with each other. It has been shown that the excitations in (5.3) are completely
described by the above K-M algebra.44

Now we are ready to do the projection and to discuss the edge excitations of the electron
system. We know the independent parton model contains unphysical degrees of freedom.
To remove the unphysical fluctuation, we need to recombine the partons into electrons.
The electron operator ψe =

∏
ψα is a SU(n) singlet under the SU(n) transformation

ψα → Uαβψβ . (Here ψα is the operator of the αth kind of the partons.) Therefore any
excitations of the electron system must be SU(n) singlets and j̃s̃ are identically zero for
physical excitations. Therefore we can recombine partons into electron by removing all
excitations with non-trivial SU(n) quantum numbers. A physical operator must not creat
any SU(n) fluctuations and therefore must commute with the SU(n) density operator j̃:

[Ôphy, j̃
s̃] = 0 (5.5)

The above equation is the analogue of the equation (2.50) in the section 2.4.

We can see that all the operators in the U(1) and the SU(m)n K-M algebra commute
with j̃, therefore edge excitations of the electronic state (χm)n are described by the U(1)×
SU(m)n K-M algebra.
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The additional factor χ
p
1 in the electron wave function (5.1) will only modify the U(1)

K-M algebra. One can show that the edge excitations in the state (5.1) are described by
the following U(1)× SU(m)n K-M algebra:

[Jk, Jk′] =
ν

2π
kδk+k′

[jr
k, js

k′] =
n

2π
kδk+k′ + frstjt

k+k′

ν =
m

pm + n

(5.6)

More precisely, the Hilbert space of the low energy edge excitations forms a representation
of the above algebra. The low energy effective Hamiltonian takes the following general
form

H =
∑

k

V JkJ−k +
∑

k;r,s

Vr,sj
r
k, js

−k +
∑

k;s

Vs(js
kJ−k + Jkjs

−k) (5.7)

(5.6) and (5.7) give us a complete description of the low energy dynamics of the edge
excitations of non-abelian QH states. Note that although the Hilbert space is generated
by the U(1)×SU(m)n K-M algebra, the Hamiltonian in general does not respect the SU(m)
symmetry. So when we say the edge excitations of a non-abelian state are described by
non-abelian K-M algebra, we only mean that the Hilbert space of the low lying excitations
forms a representation of the non-abelian algebra.

Now let us study the electron operators and the quasiparticle operators. First let us
assume p = 0. From the parton construction and requirement that the electron operators
must satisfy (5.5), we find that the electron operators on the edge are given by

ΨM
e =εα1,...,αnψα1a1 ...ψαnanSM

a1,...,an

=ei n
mφVΛn,M

(5.8)

where εα1,...,αn are rank n antisymmetric tensors (labeled by M), SM
a1,...,an

is the rank
n symmetric tensor, and VΛn,M is the primary field of the SU(m)n K-M algebra in the
representation of the rank n symmetric tensor. The field φ in (5.8) is determined through
J(x) = 1

2π∂xφ(x) and ei n
mφ is a primary field of the U(1) K-M algebra. The electron

operators in (5.8) satisfy (5.5) and are SU(n) singlet. They belong to the U(1)×SU(m)n
K-M algebra and can be written as a product of the primary fields in the U(1) and the
SU(m)n K-M algebra.45 Note that there are many different electron operators just as what
happens in the IQH states (with ν > 1) and the hierarchical FQH states. Those different
electron operators form a representation of the rank n symmetric tensors of the SU(m)
group. (5.8) also implies ΨM

e anti-commute (commute) when n is odd (even). The equal
time correlation has a form

〈Ψ†Me (x)ΨM
e (y)〉 = 〈e−i n

mφ(x)V †Λn,M (x)ei n
mφ(y)VΛn,M (y)〉 ∝ (

1
x− y

)n (5.9)

When p 6= 0, we only need to modify the U(1) vertex operator. We find in this case
the electron operators are given by

ΨM
e = ei 1

ν φVΛn,M (5.10)
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where ν is given in (5.6). Using (5.6) one can easily check that ΨM
e in (5.10) create an

unit localized charge. We can also show that

ei 1
ν φ(x)ei 1

ν φ(y)

ei n
mφ(x)ei n

mφ(y)
= (−)p

ei 1
ν φ(y)ei 1

ν φ(x)

ei n
mφ(y)ei n

mφ(x)
(5.11)

Therefore ΨM
e anti-commute when n + p =odd. In this case ΨM

e is a fermionic operator
as expected. The equal time correlation is given by

〈Ψ†Me (x)ΨM
e (y)〉 = 〈e−i 1

ν φ(x)V †Λn,M (x)ei 1
ν φ(y)VΛn,M (y)〉 ∝ (

1
x− y

)n+p (5.12)

The exponent n + p in the electron propagator can be measured experimentally through
tunneling between edge states.23 (See section 6.2 for a more detailed discussion.) Such a
measurement combining with the knowledge of the filling fraction may allow us to deter-
mine experimentally whether a FQH state is an abelian or a non-abelian state.

Now let us consider the quasiparticle operators. A generic quasiparticle operator is a
product of a primary field in the U(1) K-M algebra and a primary field VΛ in the SU(m)
K-M algebra:

Ψq = eiqΛφVΛ (5.13)

where Λ labels the representation of the primary field. The value of the qΛ is determined
by reqiring the electron wave function in presence of the quasiparticle to be single valued.
A calculation of qΛ can be found in Ref. 20. The electric charge of the quasiparticle is
given by

Q = qΛν (5.14)

Within the edge theory, the single-valueness of the electron wave function is equivalent
to the requirement that the electron operators Ψe and the quasiparticle operator Ψq are
mutually local to each other. This means the correlation function

〈T (Ψe(x1, t1)Ψq(x2, t2)...)〉 (5.15)

to be single valued as the electron operator goes around the quasiparticle operator in the
space-time. In (5.15) “...” represents other operators that make the correlation function
non-zero.

In the following we will attempt to calculate qΛ within the edge theory. For simplicity
let us consider the quasiparticles in the fundamental representation (labeled by Λ1) of
the SU(m) and assume the Hamiltonian to respect the SU(m) symmetry, i.e., Vrs ∝ δrs
and Vr = 0 in (5.7). In this case we can use the conformal field theory to calculate
the correlations. The primary fields VΛ1

and VΛn
satisfy the following operator product

expansion:
VΛ1

(z1)VΛn
(z2) ∝ (z1 − z2)h0−h1−hnVΛ0

(5.16)

where h0, h1 and hn are the conformal dimensions of the primary fields VΛ0
, VΛ1

and VΛn

respectively. z in (5.16) is given by x + iτ and τ is the imaginary time it. One can show
that46

h0 − h1 − hn =
1
m

(5.17)
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From the operator product expansion

ei 1
ν φ(z1)eiqΛ1

φ(z2) = (z1 − z2)λei( 1
ν +qΛ1

)φ(z2)

λ =
ν

2
[(

1
ν

+ qΛ1
)2 − 1

ν2 − q2
Λ1

] = qΛ1

(5.17)

we see that the single valueness of the correlation requires that λ + h0− h1− hn =integer,
or

qΛ1
= − 1

m
+ l (5.18)

where l is an integer. We find the quasiparticle operator has a form

Ψ(l)
q = ei(l− 1

m )φVΛ1
(5.19)

Such a quasiparticle operator carries a charge (l− 1
m)ν. Thus the quasiparticle mentioned

at the beginning of this section correspond to Ψ(0)
q . The above quasiparticle operator has a

conformal dimension h = ν
2 (l− 1

m)2 + m2−1
2m(m+n) .

46 Thus the propagator of the quasiparticle
is given by

〈Ψ(l)†
q (x, t)Ψ(l)

q (0)〉 ∝ (x− vJ t)−ν(l− 1
m )2(x− vjt)

− m2−1
m(m+n) (5.20)

where vJ and vj are the velocities of the excitations in the U(1) and the SU(m)n K-M
algebras respectively. In some sense the quasiparticles described by (5.19) are fundamental.
All other quasiparticles can be constructed as bound states of the quasiparticles in (5.19).

In real samples we do not have the SU(m) symmetry and different excitations in the
SU(m) K-M algebra do not move with the same velocity vj . In this case we can still say
some thing about the quasiparticle propagator. First we notice that the asymptotic form
of the equal-time correlation can be obtained from the operator product expansion

Ψ(l)†
q (x1, t)Ψ

(l)
q (x2, t) ∝ (x1 − x2)

−ν(l− 1
m )2− m2−1

m(m+n) = (x1 − x2)−g

g =
m

m + n
+

1− p

(pm + n)(m + n)
+

l2m− 2l

pm + n

(5.21)

and is independent of the Hamiltonian. If the edge excitations still have linear dispersion
relation (possibly with many different velocities), then the “equal-space” correlation will
has the form

Ψ(l)†
q (x, t1)Ψ

(l)
q (x, t2) ∝ (t1 − t2)−g (5.22)

The exponent in (5.22) can be directly measured in edge tunneling experiments (see Ref. 23
and section 6.2). The quasiparticle with l = 0 has the smallest exponent and may dominate
the edge tunneling at low energies.

The non-abelian FQH state also contains a charge νe quasiparticle with abelian statis-
tics θ = νπ. Such a quaisparticle is created by the U(1) vertex operator

Ψa = eiφ (5.23)

on the edge. This quasiparticle has the following edge propagator

〈Ψ†a(x, t)Ψa(0, t)〉 ∼ x−ν = x
− m

pm+n . (5.24)
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Before ending this section we would like to say a few words about the relation between
the above low energy effective theory and microscopic wave functions of the edge excitations
of the non-abelian QH states. If we treat the partons as the independent particles, it
is clear that edge excitations above the independent-parton ground state (5.2) contain
mn branches and described by the [U(1)]mn K-M algebra. The wave functions of the
edge excitations can be written down easily since each kind of partons forms a ν = m

IQH state. However the orthogonal edge excited states when we treat z
(α)
i , α = 1, ..., n,

as independent variables may no longer be orthogonal when we treat z
(α)
i as the same

variable zi. Therefore the projection z
(α)
i = zi reduces the dimension of the Hilbert space

and changes the structure of the edge states. From the above discussions, we expect the
new Hilbert space obtained after the projection is described by the U(1)× SU(m)n K-M
algebra.

6. APPLICATIONS TO EXPERIMENTS

In this chapter we will apply the theory of the edge excitations to some realistic situa-
tions and discuss some experimental predictions. Here we only consider the simplest cases
among vast possible experimental applications.

6.1 Static edge transport in absence of
inter-edge interactions and inter-edge tunneling

In this section we will discuss the static transport properties of large QH samples in
which the inter-edge interaction and inter-edge tunneling can be ignored. We will also
assume the sample is large enough so that all different branches on the same edge are
in equilibrium. In this case we can get some universal results about the transport in
the QH samples. The results for non-equilibrium situations depend on the detail of the
electron interaction, edge potentials and many other things and have to be discussed for
each individual experimental situation.

The problem in this section has been addressed in Ref. 10,11 using Landauer-Buttiker
type formalism. Here we will take a different approach which lead to some new results.
We find that under certain conditions, the static equilibrium transport properties of the
large QH samples do not depend on the internal topological orders in the QH states. The
transport properties can be completely determined by the filling fractions.

Let us consider a QH sample that may contain several domains with different filling
fractions. We will use i to label different edges (including the boundary of two neighboring
domains). We choose a reference state in which the voltages (i.e., the chemical potentials
of the electrons) on all the different edges are equal and are chosen to be zero. In this
reference state we have persistent edge currents circulating in the sample. As we change
the voltages on the edges, the edge currents will change. Let us use Ii to denote the change
of the edge current on the ith edge relative to the reference state. Certainly Ii’s are the
function of the edge voltages denoted by Vi.

In absence of the inter-edge tunneling the edge voltages are constant along each segment
of the edges. However the edge voltage may have discontinuous jump at branching points
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of the edges. The edge voltages Vi and (the changes of) the edge currents Ii are related
by a simple thermodynamical relation:

Ii = ∆νi
e2

h
Vi (6.1)

where ∆νi is the difference of the filling fractions on the two side of the ith edge.
The branching point of the edges can be classified into eight different types as illustrated

in Fig. 7. There, each line represents all edge branches moving in the direction indicated
by the arrow. Thus a single line may represent several edge branches moving in the same
direction. For the vertices in Fig. 7b–d, 7f–h, we need to know the voltages on two edges
in order to determine the voltage on the third edge. The voltage on the third edge is
determined by current conservation and (6.1):

V1(νa − νb) + V2(νb − νc) + V3(νc − νa) = 0 (6.2)

The more detailed relations between the three voltages depend on the details of the electron
interaction and the edge potential near the branching point. However the vertices in Fig.
7a and 7e are special. The voltages on all the three edges are equal

V1 = V2 = V3 (6.3)

Now we would like to try to use (6.2) and (6.3) to calculate the static transport prop-
erties of some HQ systems. Let us consider a simple QH sample as shown in Fig. 8. We
want to determine the voltages on different edge from the total current passing through
the Hall bar, I = I1 − I2 = ... = I7 − I8. Certainly we can only determine the voltages up
to an overall constant.

If all the vertices are of types in Fig. 7b–d, 7f–h (this is often the case when some edges
contain both right and left movers), we can only use (6.2) to determine the voltages. One
can easily see that we do not have enough equations to calculate all the unknowns. This
implies that the voltages depend on the details how the edge branches reach equilibrium
near each vertex and the edge voltages may be different from sample to sample. (However
as we will see later if the edge Hamiltonians take some special forms, the voltage on all
edges can be uniquely determined from the filling fractions even when some edges contain
both right and left movers.)

If every edge only contains excitations moving in one direction, then half the vertices
are of the type in Fig. 7a. In this case we have enough equations to determine all the
voltages (up to an overall constant). Two situations, ν > νg and ν < νg, need to be treated
separately. When ν > νg (e.g., ν = 4/3, νg = 1) we find that (Fig. 8)

V1 = V3 = V4 = ν−1
g I

h

e2 , V5 = V6 = V8 = 0, V7 = ν−1I
h

e2 , V2 = (ν−1
g − ν−1)I

h

e2 (6.4)

The overall constant is fixed by setting V8 = 0. When ν < νg we find that (Fig. 8)

V2 = V3 = V5 = (ν−1−ν−1
g )I

h

e2 , V4 = V6 = V7 = ν−1I
h

e2 , V8 = 0, V2 = (2ν−1−ν−1
g )I

h

e2
(6.5)

The results (6.4) and (6.5) also apply to more general cases (i.e., the cases in which
some edges may contain both right and left movers) under the following condition: the
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interaction between edge excitations is such that all edge branches that couple the electro-
magnetic field (i.e., with non-zero η̃I) move in the same direction. In this case the edge
excitations moving in the opposite directions are neutral excitations and can be ignored.
This reduces the problem to the one discussed in the last paragraph.

The above situation can be realized when the Hamiltonian has a form (for the system
with two branches of edge excitations)

H =
∫

dx [V1(ρ1 + ρ2)2 + V2(ν−1
1 ρ1 − ν−1

2 ρ2)2] (6.6)

The branch described by
∑

I ρI exhausts all the coupling to the electromagnetic field. All
other branches are decoupled from electromagnetic field. Such a structure of the edge
states has been found in real samples in the edge magnetoplasmon experiments where only
a single resonant peak is observed.47 Therefore we expect (6.4) and (6.5) to apply to those
samples.

The result (6.4) and (6.5) has been obtained for IQH states by using the Landauer-
Buttiger type formalism. (6.4) is generalized to the FQH regime in Ref. 10,11. However
the effects of the excitations moving in opposite directions have not been considered. We
know (6.4) and (6.5) are in general not correct. It is correct only when all the charged edge
excitations are moving in the same direction. However edge magnetoplasma experiments
suggest that, for typical samples, there is only one branch of edge excitations that couple
to electromagnetic field even for hierarchical FQH states. This implies that (6.4) and
(6.5) also apply to those typical samples. This result is a little disappointing, because it
implies that the static transport properties of large QH samples do not reveal any internal
structures (or the topological orders) of the QH states.

6.2 Tunneling between edge states

One of most remarkable properties of the edge states in the FQH effects is that the
electrons on the edges are strongly correlated that gives rise to electron propagators with
unusual exponents. Those exponents are new quantum numbers that can be measured
in edge tunneling experiments,23 so that we can distinguish different QH states with the
same filling fraction.

First let us study the tunneling between the edges of two different bulk FQH fluids (see
Fig. 9). We will limit ourselves to the tunneling at low voltages and low temperatures so
that the retardation of the tunneling can be ignored. (We will not consider the resonant
tunneling.6) We will also assume that the electron interaction to be short ranged and that
the excitations on different edges do not interact with each other. (The coulomb interaction
can be screened by a metal gate near the 2D electron gas)

Let us consider a simple case where the tunneling take place only at x = 0. The
tunneling operator now can be written as ΓA = ΓcLc

†
R|x=0, where cR,L are the electron

operators on the edge R and L. The tunneling current between the two edges It is given
by the formula48

It(t) = eΓ2
∫ +∞

−∞
dt′ θ(t− t′)×
[
ei

∫ t′
t

eVt(t̃)dt̃〈[A(t), A†(t′)]〉 − e−i
∫ t′

t
eVt(t̃)dt̃〈[A†(t), A(t′)]〉

] (6.7)
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where Vt is the voltage difference between the two edges. Introducing f(ω, t) through

ei
∫ t′

t
eVt(t̃)dt̃ =

∫
dω f(ω, t)ei(t−t′)ω (6.8)

we find that (6.7) can be rewritten as

It(t) = −2eΓ2
∫

dω Im[f(ω, t)Xret(−ω)] (6.9)

where Xret(ω) is the Fourier transformation of Xret(t):

Xret(t) = −iθ(t)〈[A(t), A†(0)]〉 (6.10)

For a DC voltage, (6.9) is simplified to

It = −2eΓ2Im[Xret(−eVt)] (6.11)

The formula (6.7) reduces the tunneling problem to a calculation of the correlation
function of the tunneling operator A. In absence of the interactions between the two
edges, the correlation function of A is simply the product of the electron propagators on
the two edges. The electron propagators for various FQH states were calculated in the
previous chapters.

In general the electron propagator has a form

G(x = 0, t) =
a−1ω−g

0
tg

(6.12)

at equal space point, where a is the cut-off length scale and ω0 is the cut-off frequency
scale. The propagator of the tunneling operator A can be calculated from (6.12)

G+(t) =〈A(t)A†(0)〉 = a−2[−ω2
0(t− iδ)2]−g

G−(t) =〈A†(0)A(t)〉 = a−2[−ω2
0(t + iδ)2]−g

(6.13)

The retarded Green function Xret is given by

Xret(ω) =
∫
−iθ(t)[G+(t)−G−(t)]eiωtdt

= a−2ω−2g
0 |ω|2g−1 π

Γ(2g)
[tgπg + isgn(ω)]

(6.14)

where Γ is the Gamma function. When g is an odd integer q, (6.14) can be further
simplified to

Xret(ω) = −i
π

(2q − 1)!
a2q−2v−2qω2q−1 (6.15)

(6.14) and (6.11) imply that the DC tunneling current is given by It ∝ V
2g−1
t that is

non-linear. The non-linear It-Vt curve is a consequence of the strong correlation in the
FQH states.
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The finite-temperature propagators can be obtained from the zero-temperature ones
through a conformal transformation.49 We find that (6.13) becomes

G+(t) =a−2(πT/ω0)2g|sh[πTt]|−2geiπgsgn(t)

G−(t) =a−2(πT/ω0)2g|sh[πTt]|−2ge−iπgsgn(t)
(6.16)

at finite temperatures. (6.16) implies

Xret(ω) = a−2ω−2g
0 (2πT )2g−1B(g − i

ω

2πT
, g + i

ω

2πT
)
sin π(g + i ω

2πT )
cos πg

(6.17)

where B is the Beta function. We see that the differential conductance (dIt/dVt)|Vt=0 is
proportional to T 2g−2

Now let us consider a situation where Vt has an AC component:

Vt(t) = V0 + V1 sin(Ωt) (6.18)

In this case the time average of f(ω, t), f̄(ω) = Ω
2π

∫ 2π/Ω
0 dtf(ω, t), has a form

f̄(ω) =
∞∑

n=−∞
anδ(eV0 + nΩ− ω) (6.19)

It is easy to see that an = a−n are real and an only depend on the ratio ξ = eV1/Ω. In
fact we have

an(ξ) =
1

4π2

∫ 2π

0
dtdt′ein(t′−t)eiξ(cos t′−cos t) (6.20)

The DC component of the tunneling current It is found to be

I
(DC)
t ≡ Ω

2π

∫ 2π/Ω

0
dtIt(t) ∝

∞∑

n=−∞
an(ξ)(eV0 + nΩ)2g−1 (6.21)

The exponent g in the electron operators is always larger then 1. For the ν = p
pq+1

(q =even) hierarchical FQH state, g = q + 1 (e.g., g = 3 for ν = 1/3, 2/5, 3/7, ...). For the
ν = 1/3, 2/7, ... FQH states, there are two edge branches moving in the opposite directions.
In this case g depend on the interaction between the two branches (see (2.43) and (2.39)).
The DC It-Vt curves described by (6.17) at finite temperatures are plotted in Fig. 10 with
g = 3. The I

(DC)
t -V0 curve in (6.21) for a few values of eV1/Ω is plotted in Fig. 11. Again

we have chosen g = 3.
To illustrate how the tunneling experiments can probe the internal correlation in the

FQH states, let us consider three different ν = 1/2 FQH states. The first ν = 1/2 FQH
state is the electron pairing state. The tunneling at low energies is governed by the pair
tunneling. The exponent g for the electron pair propagator is 8 (from the ν = 1/8 boson

Laughlin state). The second ν = 1/2 FQH state is described by the matrix K =
(

3 1
1 3

)

which corresponds the following wave function of a two layer system:
∏

(z1
i − z1

j )3
∏

(z2
i − z2

j )3
∏

(z1
i − z2

j )
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where z1 and z2 are the electron coordinates in the two layers. The exponent g in the
electron propagator for such a state is given by g = 3. The third ν = 1/2 FQH state
is the non-abelian state described by χ1χ

2
2 that has g = 3. Therefore the experimental

measurement of g allow us to determine which ν = 1/2 state is realized in the sample.
We would like to remark that for generic FQH states, there may be many different

electron operators on the edge. Different operators have different exponents in their prop-
agators. It is the operator with smallest exponent dominate the tunneling at low energies.
Therefore g is equal to the smallest exponent in the different electron propagators. The
different singularities described by the different electron operators are in some sense similar
to the different singularities in the electron propagator at kF , 3kF , etc. in the interacting
1D electron systems.

Now let us consider a more interesting device with a geometry as presented in Fig.
12. The low temperature transport of such a Hall bar is still governed by the tunneling
between the two edges. For such a system the tunneling can be accomplished by moving one
electron from one edge to the other, it can also be accomplished by moving one quasiparticle
between the edges. This is because the edges are connected by the FQH state instead of
vacuum. We know the quasiparticles in the FQH state correspond to vortices of unit flux.
The quasiparticle tunneling across the FQH sample in some sense resembles the vortex
tunneling across a superconducting stripe. The contribution from the electron tunneling
is discussed above. In the following we will concentrate on the quasiparticle tunneling.

The quasiparticle tunneling operator is given by A = Ψ†qRψqL where Ψq;R,L are the
quasiparticle operators on the edge R and L. The correlation of the tunneling operator A
still has the form (6.13) but now g is the exponent in the quasiparticle propagator and in
general is less than 1. We will assume the quasiparticle Ψq;R,L considered here has the
minimum value of g, so that it dominates the tunneling.

The tunneling formula (6.7) also applies to the quasiparticle tunneling after replacing
e by the quasiparticle charge e∗. Therefore our previous results for the electron tunneling
remain to be valid for the quasiparticle tunneling once e is replaced by e∗ and g is replaced
by the exponent in the quasiparticle propagator.

The DC It-Vt curves described by (6.17) at finite temperatures are plotted in Fig. 13
with g = 1/3 (which corresponds to the ν = 1/3 Laughlin state). The I

(DC)
t -V0 curve in

(6.21) for a few values of eV1/Ω is plotted in Fig. 14. for the same value of g.

When g is less than 1
2 , the quasiparticle tunneling has very different behaviors than

that of the electron tunneling. For example, the zero temperature DC It-Vt curve is given
by

It ∝ |Vt|2g−1sgn(Vt) (6.22)
that diverges as Vt → 0. Such a diverging tunneling curve resembles the tunneling curve
between one dimensional superconductors (with algebraic decaying superconducting order
parameters). The tunneling curve can be directly measured in experiments by measuring
I = σxyVt and V = It/σxy in Fig. 12. Here σxy = ν e2

h is the Hall conductance of the FQH
state. We would like to remark that our discussions are base on the weak tunneling theory.
Our results are valid only when the tunneling current is small: It ¿ I, or equivalently,

It/Vt ¿ σxy. (6.23)

(6.22) violates (6.23) at small Vt. In this case (6.22) is no longer valid and the divergence
is expected to be rounded off.
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In presence of the AC component, we see that there are many resonance structures
at integer values of e∗V0/Ω. Those structures provide a direct measurement of the quasi-
particle charge e∗. The resonance structures in the tunneling between the two edge states
resemble the Josephson effects between superconductors. The resonance structures in Fig.
14 reflect the existence of narrow band noise in DC transport, which is very similar to
the narrow band noise in CDW transport. Probably a more direct way to measure the
quasiparticle charge is to measure the frequency of the narrow band noise that is given by
Ωns = e∗Vt/h̄.

The exponent g in the quasiparticle propagators is in general less than 1. For the
ν = p

pq+1 (q =even) hierarchical FQH state, the charge e∗ = ν quasiparticles have the
minimum exponent g = ν (e.g., g = 1/3 and e∗ = 1/3 for the ν = 1/3 FQH state. See
the discussion at the end of the chapter 3). For the ν = 2/3, 2/7, ... FQH states, g again
depend on the interaction between the two branches moving in the opposite directions.

The quasiparticles with larger exponents certainly also contribute to the tunneling,
in particular at finite voltages and temperatures. Experimentally we can use the AC
measurement to measure the quasiparticle charges, from which we can get some idea which
quasiparticles contribute to the tunneling. Some times the second smallest exponent is
quite close to the smallest exponent and it is difficult to say which one dominates the
tunneling.

For the three ν = 1/2 FQH states discuss above, The quasiparticle with the dominate
contribution to the tunneling has the following values of g and e∗. The pairing state has
g = 1/8 and e∗ = 1/4 due to its equivalence to the ν = 1

8 Laughlin state of charge 2e

bosons. For the K =
(

3 1
1 3

)
state, the exponent g is equal to λl given in (3.16) since

the two edge branches move in the same direction. The minimum exponent g = 3/8 is
given by the charge e∗ = 1/4 quasiparticle. For the non-abelian state, the minimum g is
given by (5.21) with l = 0 and the charge by (5.14) and (5.18). Thus we have g = 1/2 and
e∗ = 1/4. From (5.24) we see that the charge e∗ = 1/2 abelian quasiparticle also has the
exponent g = 1/2.

In presence of the interedge interaction, the situation is more complicated. In general
g depend on the strength of the interedge interaction when the two edges are parallel. The
two terminal conductance of a quantum Hall sample with parallel edges will no longer be
ν e2

h if there are interedge interactions.23 The two terminal conductance σ and the exponent
g for the charge νe quasiparticle (which exists in all the QH states) are related by

σ = g
e2

h

To minimize the effect of the interedge interaction, one can choose the device geometry as
described in Fig. 12 and add metallic gate near the 2D electron gas to screen the Coulomb
interaction.
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FIGURE CAPTIONS

Fig. 1: A QH state can be viewed as a droplet of an incompressible fluid. The gapless edge
excitations are surface waves on the droplet.

Fig. 2: A special edge configuration of the ν = 2/5 FQH states in which the electron droplet
and the quasiparticle droplet are well separated.. The two edges are separated by the
ν = 1/3 Laughlin fluid.

Fig. 3 The spectrums of the edge excitations of the ν = 2
5 FQH state obtained from (a) the

effective theory and (b) the numerical calculation.

Fig. 4 The spectrums of the edge excitations of the ν = 2
3 FQH state obtained from (a) the

effective theory and (b) the numerical calculation.

Fig. 5 The energy spectrum of a QH system with 6 electrons in the first 22 orbits in the
first Landau level (i.e., the orbits with angular momenta 0, 1, ..., 21). The interaction
between electrons are described by the V1 pseudo potential. M is the total angular
momentum of the 6 electrons. The first 100 energy levels are plotted for each M . The
zero-energy states at M = 45, ..., 51 are degenerate with degeneracy 1, 1, 2, 3, 5, 7, 11.

Fig. 6 The equal time correlation of the electrons along the edge of the ν = 2 Laughlin state
(for bosons) obtained from a Monte Carlo calculation. The Laughlin state contain 37
electrons. The solid line is the theoretical prediction (4.16).

Fig. 7 The branching point of the edge states in QH samples can be classified into 8 classes.
Each line represents all the edge branches moving in the indicated direction.

Fig. 8 Quantum Hall samples containing two different filling fractions ν and νg.

Fig. 9 Tunneling junction between two QH fluids.

Fig. 10 The DC tunneling It-Vt curve for the tunneling between two ν = 1/3 Laughlin states
in Fig. 9 at finite temperatures, T = 0, 0.3, 0.6, 0.9, 1.2. In this case g = 3. We have
chosen kB = 1. eVt and T are measured with same energy unit.

Fig. 11 The IDC
t -V0 curve for the tunneling between two ν = 1/3 Laughlin states in Fig. 9.

The voltage Vt has an AC component of amplitudes eV1/Ω = 0, 2, 4, 6.

Fig. 12 A Hall bar with a narrow neck. The electrons in the shaded region form a QH state.

Fig. 13 The DC It-Vt tunneling curve for the tunneling between the two edges of the same
ν = 1/3 Laughlin state in Fig. 12 at finite temperatures, T = 0, 0.3, 0.6, ..., 1.8. In this
case g = 1/3 and e∗ = νe is the quasiparticle charge. We have chosen kB = 1. e∗Vt
and T are measured with same energy unit.

Fig. 14 The IDC
t -V0 curve for the tunneling between the two edges of the same ν = 1/3

Laughlin state in Fig. 12 with different AC components in Vt. We have chosen the
temperature T to be zero and h̄ = 1.
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